128 research outputs found

    SKOR1 mediates FER kinase-dependent invasive growth of breast cancer cells

    Get PDF
    High expression of the non-receptor tyrosine kinase FER is an independent prognostic factor that correlates with poor survival in breast cancer patients. To investigate whether the kinase activity of FER is essential for its oncogenic properties, we developed an ATP analogue-sensitive knock-in allele (FERASKI). Specific FER kinase inhibition in MDA-MB-231 cells reduces migration and invasion, as well as metastasis when xenografted into a mouse model of breast cancer. Using the FERASKI system, we identified Ski family transcriptional corepressor 1 (SKOR1) as a direct FER kinase substrate. SKOR1 loss phenocopies FER inhibition, leading to impaired proliferation, migration and invasion, and inhibition of breast cancer growth and metastasis formation in mice. We show that SKOR1 Y234, a candidate FER phosphorylation site, is essential for FER-dependent tumor progression. Finally, our work suggests that the SKOR1 Y234 residue promotes Smad2/3 signaling through SKOR1 binding to Smad3. Our study thus identifies SKOR1 as a mediator of FER-dependent progression of high-risk breast cancers. Cancer Signaling networks and Molecular Therapeutic

    Atlas of Lobular Breast Cancer Models: Challenges and Strategic Directions

    Get PDF
    Invasive lobular carcinoma (ILC) accounts for up to 15% of all breast cancer (BC) cases and responds well to endocrine treatment when estrogen receptor α-positive (ER+) yet differs in many biological aspects from other ER+ BC subtypes. Up to 30% of patients with ILC will develop late-onset metastatic disease up to ten years after initial tumor diagnosis and may experience failure of systemic therapy. Unfortunately, preclinical models to study ILC progression and predict the efficacy of novel therapeutics are scarce. Here, we review the current advances in ILC modeling, including cell lines and organotypic models, genetically engineered mouse models, and patient-derived xenografts. We also underscore four critical challenges that can be addressed using ILC models: drug resistance, lobular tumor microenvironment, tumor dormancy, and metastasis. Finally, we highlight the advantages of shared experimental ILC resources and provide essential considerations from the perspective of the European Lobular Breast Cancer Consortium (ELBCC), which is devoted to better understanding and translating the molecular cues that underpin ILC to clinical diagnosis and intervention. This review will guide investigators who are considering the implementation of ILC models in their research programs

    The laminin-keratin link shields the nucleus from mechanical deformation and signalling

    Get PDF
    The mechanical properties of the extracellular matrix dictate tissue behaviour. In epithelial tissues, laminin is a very abundant extracellular matrix component and a key supporting element. Here we show that laminin hinders the mechanoresponses of breast epithelial cells by shielding the nucleus from mechanical deformation. Coating substrates with laminin-111-unlike fibronectin or collagen I-impairs cell response to substrate rigidity and YAP nuclear localization. Blocking the laminin-specific integrin β4 increases nuclear YAP ratios in a rigidity-dependent manner without affecting the cell forces or focal adhesions. By combining mechanical perturbations and mathematical modelling, we show that β4 integrins establish a mechanical linkage between the substrate and keratin cytoskeleton, which stiffens the network and shields the nucleus from actomyosin-mediated mechanical deformation. In turn, this affects the nuclear YAP mechanoresponses, chromatin methylation and cell invasion in three dimensions. Our results demonstrate a mechanism by which tissues can regulate their sensitivity to mechanical signals.© 2023. The Author(s)

    Combined spatial Keratin expression profiles at the invasive front represent a prognostic classifier for head and neck cancer

    Get PDF
    Keratin proteins are intermediate filaments that provide mechanical support and guide a plethora of important functions in epithelial cells. Although Keratins can be effectively used to characterize and differentiate cell lineages in many epithelia, it is still unclear if combinations of Keratin types and their spatial expression patterns can aid prognostication of head and neck squamous cell carcinoma (HNSCC). Here, we have assessed a panel of Keratin markers in four HPV negative HNSCC patient-derived organoid (PDO) models and their corresponding primary patient tissue to define spatial expression profiles of basal and supra-basal Keratins during invasion in Collagen-I matrices. Based on these profiles we have devised a scoring classification consisting of the following profiles: (i) no expression (Negative), (ii) uniform expression (Homogenous), (iii) heterogeneous expression (Mosaic), (iv) expression in the tumor core (Core), and (v) expression at the invasive front (Edge). Subsequently, this 5-tier system was validated in a well-documented tissue cohort of 157 HNSCC patients. We observe that patients with a Keratin 13 (K13) Edge profile have a significantly better prognosis than patients with K13 Core expression or K13 Negative tumors. Interestingly, we also find that K14 mosaicism strongly correlates with a favorable prognosis. We show that the absence of K13 from the tumor edge, in combination with K14 homogenous expression is a strong biomarker for poor prognosis in HNSCC. In short, our work indicates that defining the spatial expression patterns of basal and supra-basal markers in invasive HNSCC can benefit patient prognostication

    The laminin–keratin link shields the nucleus from mechanical deformation and signalling

    Get PDF
    The mechanical properties of the extracellular matrix dictate tissue behaviour. In epithelial tissues, laminin is a very abundant extracellular matrix component and a key supporting element. Here we show that laminin hinders the mechanoresponses of breast epithelial cells by shielding the nucleus from mechanical deformation. Coating substrates with laminin-111—unlike fibronectin or collagen I—impairs cell response to substrate rigidity and YAP nuclear localization. Blocking the laminin-specific integrin ß4 increases nuclear YAP ratios in a rigidity-dependent manner without affecting the cell forces or focal adhesions. By combining mechanical perturbations and mathematical modelling, we show that ß4 integrins establish a mechanical linkage between the substrate and keratin cytoskeleton, which stiffens the network and shields the nucleus from actomyosin-mediated mechanical deformation. In turn, this affects the nuclear YAP mechanoresponses, chromatin methylation and cell invasion in three dimensions. Our results demonstrate a mechanism by which tissues can regulate their sensitivity to mechanical signals.We thank A. Farré and the other members of IMPETUX OPTICS, S.L., for their help and expertise in the design and implementation of the optical tweezers experiments; R. Sunyer for help and advice with the microprinting experiments; S. Usieto, A. Menéndez, N. Castro, M. Purciolas and W. Haaksma for providing technical support; L. Rosetti and S. Saloustros for providing data analysis tools; and J. de Rooij, A. L. Le Roux, L. Faure, A. Labernadie, R. Oria and J. Abenza, as well as all the members of the groups of P.R.-C. and X.T. for helpful discussion. Finally, we thank G. Wiche, A. Sonnenberg and N. Montserrat for providing plasmids, antibodies or cell lines used for this work. We acknowledge funding from the Spanish Ministry of Science and Innovation (PID2021-128635NB-I00 MCIN/AEI/10.13039/501100011033 and ‘ERDF-EU A way of making Europe’ to X.T., PID2019-110949GB-I00 to M.A. and PID2019-110298GB-I00 to P.R.-C.), the European Commission (H2020-FETPROACT-01-2016-731957), the European Research Council (Adv-883739 to X.T.; CoG-681434 to M.A.; StG- 851055 to A.E.-A.), the Generalitat de Catalunya (2017-SGR-1602 to X.T. and P.R.-C.; 2017-SGR-1278 to M.A. and P.S.) and European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 797621 to M.G.-G. The prize ‘ICREA Academia’ for excellence in research to M.A. and P.R.-C., Fundació la Marató de TV3 (201936-30-31 and 201903-30-31-32), and ‘la Caixa’ Foundation (LCF/PR/HR20/52400004 and ID 100010434 under agreement LCF/PR/HR20/52400004). IBEC and CIMNE are recipients of a Severo Ochoa Award of Excellence from MINCIN. A.E.M.B. was supported by a Sir Henry Wellcome Fellowship (210887/Z/18/Z). A.E.-A. receives funding from the Francis Crick Institute, which receives its core funding from the Cancer Research UK (CC2214), the UK Medical Research Council (CC2214) and the Wellcome Trust (CC2214).Peer ReviewedPostprint (published version

    p120-catenin prevents multinucleation through control of MKLP1-dependent RhoA activity during cytokinesis.

    Get PDF
    Spatiotemporal activation of RhoA and actomyosin contraction underpins cellular adhesion and division. Loss of cell-cell adhesion and chromosomal instability are cardinal events that drive tumour progression. Here, we show that p120-catenin (p120) not only controls cell-cell adhesion, but also acts as a critical regulator of cytokinesis. We find that p120 regulates actomyosin contractility through concomitant binding to RhoA and the centralspindlin component MKLP1, independent of cadherin association. In anaphase, p120 is enriched at the cleavage furrow where it binds MKLP1 to spatially control RhoA GTPase cycling. Binding of p120 to MKLP1 during cytokinesis depends on the N-terminal coiled-coil domain of p120 isoform 1A. Importantly, clinical data show that loss of p120 expression is a common event in breast cancer that strongly correlates with multinucleation and adverse patient survival. In summary, our study identifies p120 loss as a driver event of chromosomal instability in cancer

    Canonical Kaiso target genes define a functional signature that associates with breast cancer survival and the invasive lobular carcinoma histological type

    Get PDF
    Invasive lobular carcinoma (ILC) is a low- to intermediate-grade histological breast cancer type caused by mutational inactivation of E-cadherin function, resulting in the acquisition of anchorage independence (anoikis resistance). Most ILC cases express estrogen receptors, but options are limited in relapsed endocrine-refractory disease as ILC tends to be less responsive to standard chemotherapy. Moreover, ILC can relapse after >15 years, an event that currently cannot be predicted. E-cadherin inactivation leads to p120-catenin-dependent relief of the transcriptional repressor Kaiso (ZBTB33) and activation of canonical Kaiso target genes. Here, we examined whether an anchorage-independent and ILC-specific transcriptional program correlated with clinical parameters in breast cancer. Based on the presence of a canonical Kaiso-binding consensus sequence (cKBS) in the promoters of genes that are upregulated under anchorage-independent conditions, we defined an ILC-specific anoikis resistance transcriptome (ART). Converting the ART genes into human orthologs and adding published Kaiso target genes resulted in the Kaiso-specific ART (KART) 33-gene signature, used subsequently to study correlations with histological and clinical variables in primary breast cancer. Using publicly available data for ER POS Her2 NEG breast cancer, we found that expression of KART was positively associated with the histological ILC breast cancer type (p < 2.7E-07). KART expression associated with younger patients in all invasive breast cancers and smaller tumors in invasive ductal carcinoma of no special type (IDC-NST) (<2 cm, p < 6.3E-10). We observed associations with favorable long-term prognosis in both ILC (hazard ratio [HR] = 0.51, 95% CI = 0.29-0.91, p < 3.4E-02) and IDC-NST (HR = 0.79, 95% CI = 0.66-0.93, p < 1.2E-04). Our analysis thus defines a new mRNA expression signature for human breast cancer based on canonical Kaiso target genes that are upregulated in E-cadherin deficient ILC. The KART signature may enable a deeper understanding of ILC biology and etiology. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland

    R-spondin-3 is an oncogenic driver of poorly differentiated invasive breast cancer

    Get PDF
    R-spondins (RSPOs) are influential signaling molecules that promote the Wnt/β-catenin pathway and self-renewal of stem cells. Currently, RSPOs are emerging as clinically relevant oncogenes, being linked to cancer development in multiple organs. Although this has instigated the rapid development and testing of therapeutic antibodies targeting RSPOs, functional evidence that RSPO causally drives cancer has focused primarily on the intestinal tract. Here, we assess the oncogenic capacity of RSPO in breast cancer in a direct fashion by generating and characterizing a novel mouse model with conditional Rspo3 expression in the mammary gland. We also address the prevalence of RSPO gene alterations in breast cancer patients. We found that a quarter of breast cancer patients harbor RSPO2/RSPO3 copy number amplifications, which are associated with lack of steroid hormone receptor expression and reduced patient survival. Foremost, we demonstrate the causal oncogenic capacity of RSPO3 in the breast, as conditional Rspo3 overexpression consistently drives the development of mammary adenocarcinomas in our novel Rspo3 breast cancer model. RSPO3-driven mammary tumors typically show poor differentiation, areas of epithelial-to-mesenchymal transition, and metastatic potential. Given the reported interplay in the Wnt/β-catenin pathway, we comparatively analyzed RSPO3-driven mouse mammary tumors versus classical WNT1-driven analogues. This revealed that RSPO3-driven tumors are distinct, as the poorly differentiated tumor morphology and metastatic potential were observed in RSPO3-driven tumorigenesis exclusively, further substantiated by differentiating gene expression profiles. Co-expression of Rspo3 and Wnt1 transduced mammary tumors with a mixed phenotype harboring morphological features characteristic of both transgenes. In summary, we report that a quarter of breast cancer patients harbor RSPO2/RSPO3 copy number gains, and these patients have a worse prognosis, whilst providing in vivo evidence that RSPO3 drives poorly differentiated invasive breast cancer in mice. Herewith, we establish RSPO3 as a driver of breast cancer with clinical relevance, proposing RSPO3 as a novel candidate target for therapy in breast cancer

    R-spondin-3 promotes proliferation and invasion of breast cancer cells independently of Wnt signaling

    Get PDF
    We recently identified R-spondin-3 (RSPO3) as a novel driver of breast cancer associating with reduced patient survival, expanding its clinical value as potential therapeutic target that had been recognized mostly for colorectal cancer so far. (Pre)clinical studies exploring RSPO3 targeting in colorectal cancer approach this indirectly with Wnt inhibitors, or directly with anti-RSPO3 antibodies. Here, we address the clinical relevance of RSPO3 in breast cancer and provide insight in the oncogenic activities of RSPO3. Utilizing the RSPO3 breast cancer mouse model, we show that RSPO3 drives the aberrant expansion of luminal progenitor cells expressing cancer stem cell marker CD61, inducing proliferative, poorly differentiated and invasive tumors. Complementary studies with tumor organoids and human breast cancer cell lines demonstrate that RSPO3 consistently promotes the proliferation and invasion of breast cancer cells. Importantly, RSPO3 exerts these oncogenic effects independently of Wnt signaling, rejecting the therapeutic value of Wnt inhibitors in RSPO3-driven breast cancer. Instead, direct RSPO3 targeting effectively inhibited RSPO3-driven growth of breast cancer cells. Conclusively, our data indicate that RSPO3 exerts unfavorable oncogenic effects in breast cancer, enhancing proliferation and malignancy in a Wnt-independent fashion, proposing RSPO3 itself as a valuable therapeutic target in breast cancer

    Receptor-Mediated Enhancement of Beta Adrenergic Drug Activity by Ascorbate In Vitro and In Vivo

    Get PDF
    RATIONALE: Previous in vitro research demonstrated that ascorbate enhances potency and duration of activity of agonists binding to alpha 1 adrenergic and histamine receptors. OBJECTIVES: Extending this work to beta 2 adrenergic systems in vitro and in vivo. METHODS: Ultraviolet spectroscopy was used to study ascorbate binding to adrenergic receptor preparations and peptides. Force transduction studies on acetylcholine-contracted trachealis preparations from pigs and guinea pigs measured the effect of ascorbate on relaxation due to submaximal doses of beta adrenergic agonists. The effect of inhaled albuterol with and without ascorbate was tested on horses with heaves and sheep with carbachol-induced bronchoconstriction. MEASUREMENTS: Binding constants for ascorbate binding to beta adrenergic receptor were derived from concentration-dependent spectral shifts. Dose- dependence curves were obtained for the relaxation of pre-contracted trachealis preparations due to beta agonists in the presence and absence of varied ascorbate. Tachyphylaxis and fade were also measured. Dose response curves were determined for the effect of albuterol plus-and-minus ascorbate on airway resistance in horses and sheep. MAIN RESULTS: Ascorbate binds to the beta 2 adrenergic receptor at physiological concentrations. The receptor recycles dehydroascorbate. Physiological and supra-physiological concentrations of ascorbate enhance submaximal epinephrine and isoproterenol relaxation of trachealis, producing a 3-10-fold increase in sensitivity, preventing tachyphylaxis, and reversing fade. In vivo, ascorbate improves albuterol's effect on heaves and produces a 10-fold enhancement of albuterol activity in "asthmatic" sheep. CONCLUSIONS: Ascorbate enhances beta-adrenergic activity via a novel receptor-mediated mechanism; increases potency and duration of beta adrenergic agonists effective in asthma and COPD; prevents tachyphylaxis; and reverses fade. These novel effects are probably caused by a novel mechanism involving phosphorylation of aminergic receptors and have clinical and drug-development applications
    • …
    corecore