10 research outputs found
Recommended from our members
Contrasting Effects of Al Substitution on Microbial Reduction of Fe(III) (Hydr)oxides
Aluminum, one of the most abundant elements in soils and sediments, is commonly found co-precipitated with Fe in natural Fe(III) (hydr)oxides; yet, little is known about how Al substitution impacts bacterial Fe(III) reduction. Accordingly, we investigated the reduction of Al substituted (0–13 mol% Al) goethite, lepidocrocite, and ferrihydrite by the model dissimilatory Fe(III)-reducing bacterium (DIRB), Shewanella putrefaciens CN32. Here we reveal that the impact of Al on microbial reduction varies with Fe(III) (hydr)oxide type. No significant difference in Fe(III) reduction was observed for either goethite or lepidocrocite as a function of Al substitution. In contrast, Fe(III) reduction rates significantly decreased with increasing Al substitution of ferrihydrite, with reduction rates of 13% Al-ferrihydrite more than 50% lower than pure ferrihydrite. Although Al substitution changed the minerals’ surface area, particle size, structural disorder, and abiotic dissolution rates, we did not observe a direct correlation between any of these physiochemical properties and the trends in bacterial Fe(III) reduction. Based on projected Al-dependent Fe(III) reduction rates, reduction rates of ferrihydrite fall below those of lepidocrocite and goethite at substitution levels equal to or greater than 18 mol% Al. Given the prevalence of Al substitution in natural Fe(III) (hydr)oxides, our results bring into question the conventional assumptions about Fe (hydr)oxide bioavailability and suggest a more prominent role of natural lepidocrocite and goethite phases in impacting DIRB activity in soils and sediments.Engineering and Applied Science
Investigating diversity of pathogenic microbes in commercial bait trade water
The recreational bait trade is a potential pathway for pathogen introduction and spread when anglers dump bait shop sourced water into aquatic systems. Despite this possibility, and previous recognition of the importance of the bait trade in the spread of aquatic invasive species (AIS), to date there has been no region wide survey documenting pathogens in retail bait shops. In this study, we analyzed 96 environmental DNA samples from retail bait shops around the Great Lakes region to identify pathogens, targeting the V4 hypervariable region of the 16S rRNA gene. Additionally, we used samples from one site in Lake Michigan as a comparison to pathogen diversity and abundance in natural aquatic systems. Our results identified nine different groups of pathogens in the bait shop samples, including those that pose risks to both humans and fish species. Compared to wild sourced samples, the bait shops had higher relative abundance and greater taxonomic diversity. These findings suggest that the bait trade represents a potentially important pathway that could introduce and spread pathogens throughout the Great Lakes region. Improving pathogen screening and angler outreach should be used in combination to aid in preventing the future spread of high risk pathogens
Comparative genomics of 16 Microbacterium spp. that tolerate multiple heavy metals and antibiotics
A total of 16 different strains of Microbacterium spp. were isolated from contaminated soil and enriched on the carcinogen, hexavalent chromium [Cr(VI)]. The majority of the isolates (11 of the 16) were able to tolerate concentrations (0.1 mM) of cobalt, cadmium, and nickel, in addition to Cr(VI) (0.5–20 mM). Interestingly, these bacteria were also able to tolerate three different antibiotics (ranges: ampicillin 0–16 μg ml−1, chloramphenicol 0–24 μg ml−1, and vancomycin 0–24 μg ml−1). To gain genetic insight into these tolerance pathways, the genomes of these isolates were assembled and annotated. The genomes of these isolates not only have some shared genes (core genome) but also have a large amount of variability. The genomes also contained an annotated Cr(VI) reductase (chrR) that could be related to Cr(VI) reduction. Further, various heavy metal tolerance (e.g., Co/Zn/Cd efflux system) and antibiotic resistance genes were identified, which provide insight into the isolates’ ability to tolerate metals and antibiotics. Overall, these isolates showed a wide range of tolerances to heavy metals and antibiotics and genetic diversity, which was likely required of this population to thrive in a contaminated environment
Microbial community diversity patterns are related to physical and chemical differences among temperate lakes near Beaver Island, MI
Lakes are dynamic and complex ecosystems that can be influenced by physical, chemical, and biological processes. Additionally, individual lakes are often chemically and physically distinct, even within the same geographic region. Here we show that differences in physicochemical conditions among freshwater lakes located on (and around) the same island, as well as within the water column of each lake, are significantly related to aquatic microbial community diversity. Water samples were collected over time from the surface and bottom-water within four freshwater lakes located around Beaver Island, MI within the Laurentian Great Lakes region. Three of the sampled lakes experienced seasonal lake mixing events, impacting either O2, pH, temperature, or a combination of the three. Microbial community alpha and beta diversity were assessed and individual microbial taxa were identified via high-throughput sequencing of the 16S rRNA gene. Results demonstrated that physical and chemical variability (temperature, dissolved oxygen, and pH) were significantly related to divergence in the beta diversity of surface and bottom-water microbial communities. Despite its correlation to microbial community structure in unconstrained analyses, constrained analyses demonstrated that dissolved organic carbon (DOC) concentration was not strongly related to microbial community structure among or within lakes. Additionally, several taxa were correlated (either positively or negatively) to environmental variables, which could be related to aerobic and anaerobic metabolisms. This study highlights the measurable relationships between environmental conditions and microbial communities within freshwater temperate lakes around the same island
Constraints on superoxide mediated formation of manganese oxides
Manganese (Mn) oxides are among the most reactive sorbents and oxidants within the environment, where they play a central role in the cycling of nutrients, metals, and carbon. Recent discoveries have identified superoxide (O2-) (both of biogenic and abiogenic origin) as an effective oxidant of Mn(II) leading to the formation of Mn oxides. Here we examined the conditions under which abiotically produced superoxide led to oxidative precipitation of Mn and the solid-phases produced. Oxidized Mn, as both aqueous Mn(III) and Mn(III/IV) oxides, was only observed in the presence of active catalase, indicating that hydrogen peroxide, a product of the reaction of O2- with Mn(II), inhibits the oxidation process presumably through the reduction of Mn(III). Citrate and pyrophosphate increased the yield of oxidized Mn but decreased the amount of Mn oxide produced via formation of Mn(III)-ligand complexes. While complexing ligands played a role in stabilizing Mn(III), they did not eliminate the inhibition of net Mn(III) formation by H2O2. The Mn oxides precipitated were highly disordered colloidal hexagonal birnessite, similar to those produced by biotically generated superoxide. Yet, in contrast to the large particulate Mn oxides formed by biogenic superoxide, abiotic Mn oxides did not ripen to larger, more crystalline phases. This suggests that the deposition of crystalline Mn oxides within the environment requires a biological, or at least organic, influence. This work provides the first direct evidence that, under conditions relevant to natural waters, oxidation of Mn(II) by superoxide can occur and lead to formation of Mn oxides. For organisms that oxidize Mn(II) by producing superoxide, these findings may also point to other microbially mediated processes, in particular enzymatic hydrogen peroxide degradation and/or production of organic ligand metabolites, that allow for Mn oxide formation
Metabolic and genomic analysis elucidates strain-level variation in Microbacterium spp. isolated from chromate contaminated sediment
Hexavalent chromium [Cr(VI)] is a soluble carcinogen that has caused widespread contamination of soil and water in many industrial nations. Bacteria have the potential to aid remediation as certain strains can catalyze the reduction of Cr(VI) to insoluble and less toxic Cr(III). Here, we examine Cr(VI) reducing Microbacterium spp. (Cr-K1W, Cr-K20, Cr-K29, and Cr-K32) isolated from contaminated sediment (Seymore, Indiana) and show varying chromate responses despite the isolates’ phylogenetic similarity (i.e., identical 16S rRNA gene sequences). Detailed analysis identified differences based on genomic metabolic potential, growth and general metabolic capabilities, and capacity to resist and reduce Cr(VI). Taken together, the discrepancies between the isolates demonstrate the complexity inter-strain variation can have on microbial physiology and related biogeochemical processes
Biogeochemical and microbial variation across 5500 km of Antarctic surface sediment implicates organic matter as a driver of benthic community structure
Western Antarctica, one of the fastest warming locations on Earth, is a unique environment that is underexplored with regards to biodiversity. Although pelagic microbial communities in the Southern Ocean and coastal Antarctic waters have been well studied, there are fewer investigations of benthic communities and most have a focused geographic range. We sampled surface sediment from 24 sites across a 5,500 km region of Western Antarctica (covering the Ross Sea to the Weddell Sea) to examine relationships between microbial communities and sediment geochemistry. Sequencing of the 16S and 18S rRNA genes showed microbial communities in sediments from the Antarctic Peninsula (AP) and Western Antarctica (WA), including the Ross, Amundsen, and Bellingshausen Seas, could be distinguished by correlations with organic matter concentrations and stable isotope fractionation (total organic carbon; TOC, nitrogen, and δ13C). Overall, samples from the AP were higher in nutrient content (TOC, nitrogen, and NH4+) and communities in these samples had higher relative abundances of operational taxonomic units (OTUs) classified as the diatom, Chaetoceros, a marine cercozoan and four OTUs classified as Cytophaga or Flavobacteria. As these OTUs were strongly correlated with TOC, the data suggests the diatoms could be a source of organic matter and the Bacteroidetes and cercozoan are grazers that consume the organic matter. Additionally, samples from WA have lower nutrients and were dominated by Thaumarchaeota, which could be related to their known ability to thrive as lithotrophs. This study documents the largest analysis of benthic microbial communities to date in the Southern Ocean, representing almost half the continental shoreline of Antarctica, and documents trophic interactions and coupling of pelagic and benthic communities. Our results indicate potential modifications in carbon sequestration processes related to change in community composition, identifying a prospective mechanism that links climate change to carbon availability