607 research outputs found

    Irreducible Cartesian multipole decomposition of scattered light with explicit contribution of high order toroidal moments

    Get PDF
    Multipole decomposition is a powerful tool for analysis of electromagnetic systems. This work considers high order irreducible Cartesian multipole moments in approximation of electric 32-pole and magnetic 16-pole. The explicit contributions to scattering of high order toroidal moments up to toroidal electric octupole and toroidal magnetic quadrupole are demonstrated for a dielectric high refractive index scatterer. © 2020 IOP Publishing Ltd

    Astrophysical science metrics for next-generation gravitational-wave detectors

    Get PDF
    The second generation of gravitational-wave detectors are being built and tuned all over the world. The detection of signals from binary black holes is beginning to fulfill the promise of gravitational-wave astronomy. In this work, we examine several possible configurations for third-generation laser interferometers in existing km-scale facilities. We propose a set of astrophysically motivated metrics to evaluate detector performance. We measure the impact of detector design choices against these metrics, providing a quantitative cost-benefit analyses of the resulting scientific payoffs

    Gravitational waves from Sco X-1: A comparison of search methods and prospects for detection with advanced detectors

    Get PDF
    The low-mass X-ray binary Scorpius X-1 (Sco X-1) is potentially the most luminous source of continuous gravitational-wave radiation for interferometers such as LIGO and Virgo. For low-mass X-ray binaries this radiation would be sustained by active accretion of matter from its binary companion. With the Advanced Detector Era fast approaching, work is underway to develop an array of robust tools for maximizing the science and detection potential of Sco X-1. We describe the plans and progress of a project designed to compare the numerous independent search algorithms currently available. We employ a mock-data challenge in which the search pipelines are tested for their relative proficiencies in parameter estimation, computational efficiency, robust- ness, and most importantly, search sensitivity. The mock-data challenge data contains an ensemble of 50 Scorpius X-1 (Sco X-1) type signals, simulated within a frequency band of 50-1500 Hz. Simulated detector noise was generated assuming the expected best strain sensitivity of Advanced LIGO and Advanced VIRGO (4×10244 \times 10^{-24} Hz1/2^{-1/2}). A distribution of signal amplitudes was then chosen so as to allow a useful comparison of search methodologies. A factor of 2 in strain separates the quietest detected signal, at 6.8×10266.8 \times 10^{-26} strain, from the torque-balance limit at a spin frequency of 300 Hz, although this limit could range from 1.2×10251.2 \times 10^{-25} (25 Hz) to 2.2×10262.2 \times 10^{-26} (750 Hz) depending on the unknown frequency of Sco X-1. With future improvements to the search algorithms and using advanced detector data, our expectations for probing below the theoretical torque-balance strain limit are optimistic.Comment: 33 pages, 11 figure

    On Some Lie Bialgebra Structures on Polynomial Algebras and their Quantization

    Get PDF
    We study classical twists of Lie bialgebra structures on the polynomial current algebra g[u]\mathfrak{g}[u], where g\mathfrak{g} is a simple complex finite-dimensional Lie algebra. We focus on the structures induced by the so-called quasi-trigonometric solutions of the classical Yang-Baxter equation. It turns out that quasi-trigonometric rr-matrices fall into classes labelled by the vertices of the extended Dynkin diagram of g\mathfrak{g}. We give complete classification of quasi-trigonometric rr-matrices belonging to multiplicity free simple roots (which have coefficient 1 in the decomposition of the maximal root). We quantize solutions corresponding to the first root of sl(n)\mathfrak{sl}(n).Comment: 41 pages, LATE

    Astrophysical science metrics for next-generation gravitational-wave detectors

    Get PDF
    The second generation of gravitational-wave (GW) detectors are being built and tuned all over the world. The detection of signals from binary black holes is beginning to fulfil the promise of GW astronomy. In this work, we examine several possible configurations for third-generation laser interferometers in existing km-scale facilities. We propose a set of astrophysically motivated metrics to evaluate detector performance. We measure the impact of detector design choices against these metrics, providing a quantitative cost-benefit analyses of the resulting scientific payoffs

    Microwave absorption in the frustrated ferrimagnet Cu₂OSeO₃

    No full text
    The resonance properties of a new Cu₂OSeO₃ ferrimagnet have been investigated in a wide range of frequencies (17–142 GHz) at liquid helium temperature. The resonance data were used to plot the frequencyfield dependence of the ferrimagnetic spectrum described within the model of an anisotropic two-sublattice ferrimagnet. The effective magnetic anisotropy corresponding to the gap in the spin wave spectrum has been estimated (3 GHz). It is found that the spectrum has a multicomponent structure which is due to the diversity of the types of magnetization precession. As the amplitude of the high-frequency magnetic field increased, an additional absorption was observed in the external magnetic field lower than the field of the main resonance. The detected additional absorption corresponds to the nonuniform nonlinear parametric resonance, connected with nonuniformity of magnetic structure in the ferrimagnetic crystal Cu₂OSeO₃

    A high precision, compact electromechanical ground rotation sensor

    Get PDF
    We present a mechanical rotation sensor consisting of a balance pivoting on a tungsten carbide knife edge. These sensors are important for precision seismic isolation systems, as employed in land-based gravitational wave interferometers and for the new field of rotational seismology. The position sensor used is an air-core linear variable differential transformer with a demonstrated noise floor of 1×10^(−11)m/√Hz. We describe the instrument construction and demonstrate low noise operation with a noise floor upper bound of 5.7×10^(−9)rad/√Hz at 10 mHz and 6.4×10^(−10)rad/√Hz at 0.1 Hz. The performance of the knife edge hinge is compatible with a behaviorur free of noise from dislocation self-organized criticality
    corecore