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Abstract

We study classical twists of Lie bialgebra structures on the polynomial current
algebra g[u], where g is a simple complex finite-dimensional Lie algebra. We focus
on the structures induced by the so-called quasi-trigonometric solutions of the
classical Yang-Baxter equation. It turns out that quasi-trigonometric r-matrices
fall into classes labelled by the vertices of the extended Dynkin diagram of g.
We give complete classification of quasi-trigonometric r-matrices belonging to
multiplicity free simple roots (which have coefficient 1 in the decomposition of
the maximal root). We quantize solutions corresponding to the first root of sl(n).

1 Introduction

Recall that, given a Lie algebra g, the classical Yang-Baxter equation (CYBE) with one
spectral parameter is the equation

[X12(u), X13(u+ v)] + [X12(u), X23(v)] + [X13(u+ v), X23(v)] = 0, (1.1)

where X(u) is a meromorphic function of one complex variable u, defined in a neigh-
bourhood of 0, taking values in g⊗g. In their outstanding paper [2], A. Belavin and V.
Drinfeld investigated solutions of the CYBE for a simple complex Lie algebra g. They
considered so-called nondegenerate solutions (i.e. X(u) has maximal rank for generic
u). It was proved in [2] that nondegenerate solutions are of three types: rational,
trigonometric and elliptic. Moreover the authors completely classified trigonometric
and elliptic solutions, the last ones for the case g = sl(n).

One can see that any rational solution of CYBE provides the Lie bialgebra structure
on polynomial Lie algebra g[u] for a simple Lie algebra g. On the contrary, there are
no clear Lie bialgebra structures related to elliptic solutions of CYBE.
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For trigonometric solutions of CYBE, the situation is as follows. Any trigonometric
solution has the form Y (ek(u−v)), where Y is a g ⊗ g-valued rational function and k is
some constant. After setting eku = z this solution provides a Lie bialgebra structure
either on Lie algebra g[z, z−1] or on its twisted version but does not induce, generally
speaking, a Lie bialgebra structure on the polynomial Lie algebra g[z].

Therefore we are motivated to introduce a class of solutions of ’trigonometric’ type
that will induce Lie bialgebra structures on g[u]. Let Ω denote the quadratic Casimir
element of g. We say that a solution X of the CYBE is quasi-trigonometric if it is of
the form:

X(u, v) =
vΩ

u− v
+ p(u, v), (1.2)

where p(u, v) is a polynomial with coefficients in g⊗g. We will prove that by applying a
certain holomorphic transformation and a change of variables, any quasi-trigonometric
solution becomes trigonometric, in the sense of Belavin-Drinfeld classification.

In the works [8, 9] to any Lie bialgebra V. Drinfeld assigned another Lie bialgebra,
the so-called classical double. F. Montaner and E. Zelmanov [27] proved that for any
Lie bialgebra structure on g[u] its classical double is isomorphic as a Lie algebra to one
of four Lie algebras. We will consider two of them: g((u−1)) and g((u−1)) ⊕ g.

The study of the Lie bialgebra structures given by quasi-trigonometric solutions will
be based on the description of the classical double. We show that all quasi-trigonometric
solutions induce the same classical double g((u−1)) ⊕ g. Moreover we construct a one-
to-one correspondence between this type of solutions and a special class of Lagrangian
subalgebras of the g((u−1)) ⊕ g. It turns out that such Lagrangian subalgebras can
be embedded into some maximal orders of g((u−1)) ⊕ g, which correspond to vertices
of the extended Dynkin diagram of g. This embedding enables us to classify quasi-
trigonometric solutions of CYBE which correspond to multiplicity free roots. We also
use the classification of Manin triples for reductive Lie algebras in terms of generalized
Belavin-Drinfeld data obtained by P. Delorme [6]. In particular, we get a complete com-
binatorial description of quasi-trigonometric solutions of CYBE, related to Lie algebra
sl(n).

The goal of the second part of the paper is to propose a quantization scheme for
some of the Lie bialgebra structures on g[u] for g = sl(n) described in the first part of
the paper. In all these cases the quantization is given by an explicit construction of the
corresponding twist. More precisely, the corresponding Hopf algebra is isomorphic to
Uq(g[u]) with twisted comultiplication, where Uq(g[u]) is defined as certain subalgebra
of quantum affine algebra Uq(ĝ). This result confirms the natural conjecture made in
[21] and recently proved in [17]: any classical twist can be quantized.

For the construction of twist quantizations of quasi-trigonometric solutions of CYBE,
we use nontrivial embedings of certain Hopf subalgebras of the quantized universal en-
veloping algebra Uq(sln+1), called seaweed algebras [7] into Uq(ŝln). This enables us to
’affinize’ the finite - dimensional twists constructed in [15] and [19].
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2 Lie bialgebra structures and classical twists

Let g denote an arbitrary complex Lie algebra. We recall that a Lie bialgebra structure
on g is a 1-cocycle δ : g −→ ∧2g which satisfies the co-Jacobi identity. In other words,
δ provides a Lie algebra structure for g∗ compatible with the structure of g.

To any Lie bialgebra (g, δ) one associates the so-called classical double D(g, δ). It
is defined as the unique Lie algebra structure on the vector space g ⊕ g∗ such that:

a) it induces the given Lie algebra structures on g and g∗

b) the bilinear form Q defined by

Q(x1 + l1, x2 + l2) = l1(x2) + l2(x1) (2.1)

is invariant with respect to the adjoint representation of g ⊕ g∗.
Let δ1 be a Lie bialgebra structure on g. Suppose s ∈ ∧2g satisfies

[s12, s13] + [s12, s23] + [s13, s23] = Alt(δ1 ⊗ id)(s), (2.2)

where Alt(x) := x123 + x231 + x312 for any x ∈ g⊗3. Then

δ2(a) := δ1(a) + [a⊗ 1 + 1 ⊗ a, s] (2.3)

defines a Lie bialgebra structure on g. We call s a classical twist and say that the
bialgebra structures (g, δ1) and (g, δ2) are related by a classical twist.

The construction of the double suggests another notion of equivalence between bial-
gebras. Namely, we say that Lie bialgebra structures δ1 and δ2 on g are in the same
twisting class if there is a Lie algebra isomorphism f : D(g, δ1) −→ D(g, δ2) satisfying
the properties:

1) Q1(x, y) = Q2(f(x), f(y)) for any x, y ∈ D(g, δ1), where Qi denotes the canonical
form on D(g, δi), i = 1, 2.

2) f ◦ j1 = j2, where ji is the canonical embedding of g in D(g, δi).
For a finite-dimensional g, it was shown in [20] that two Lie bialgebra structures are

in the same twisting class if and only if they are related by a classical twist.

Example 2.1. Let g be finite-dimensional. All Lie bialgebra structures induced by
triangular r-matrices are related by classical twists. The classical double corresponding
to any triangular r-matrix is isomorphic to the semidirect sum g ∔ g∗ such that g∗ is a
commutative ideal and [a, l] = ad∗(a)(l) for any a ∈ g and l ∈ g∗.

Another example of twisting is the following:

Example 2.2. Suppose g is simple and let δ0 be the Lie bialgebra structure induced
by the standard Drinfeld-Jimbo r-matrix. Then the entire Belavin-Drinfeld list [1] is
obtained by twisting the standard structure δ0. The classical double corresponding to
any r-matrix from this list is isomorphic to g ⊕ g.

Now, if we pass to the case of infinite-dimensional Lie bialgebra structures, we
encounter more examples of twisting.
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Let us recall several facts from the theory of rational solutions as it was developed in
[33]. We let again g denote a simple Lie algebra. Denote by K the Killing form and let
Ω be the corresponding Casimir element of g. We look for functions X : C2 −→ g ⊗ g

which satisfy

[X12(u1, u2), X
13(u1, u3)] + [X12(u1, u2), X

23(u2, u3)]+ (2.4)

+[X13(u1, u3), X
23(u2, u3)] = 0,

X12(u, v) = −X21(v, u). (2.5)

Remark 2.3. We will call these two equations the classical Yang-Baxter equation (CYBE).
In the case of rational and quasi-trigonometric solutions, the unitarity condition (2.5)
can actually be dropped. We will prove in Appendix that (2.5) is a consequence of
(2.4).

Definition 2.4. Let X(u, v) = Ω
u−v

+ p(u, v) be a function from C2 to g ⊗ g, where
p(u, v) is a polynomial with coefficients in g ⊗ g. If X satisfies the CYBE, we say that
X is a rational solution.

Two rational solutions X1 and X2 are called gauge equivalent if there exists σ(u) ∈
Aut(g[u]) such that X2(u, v) = (σ(u) ⊗ σ(v))X1(u, v), where Aut(g[u]) denotes the
group of automorphisms of g[u] considered as an algebra over C[u].

Remark 2.5. It was proved in [33] that any rational solution can be brought by means
of a gauge transformation to the form:

X(u, v) =
Ω

u− v
+ p00 + p10u+ p01v + p11uv,

where p00, p10, p01, p11∈ g ⊗ g.

We recall that any rational solution induces a Lie bialgebra structure on the poly-
nomial current algebra g[u]. Let us consider a rational solution X and define the map
δX : g[u] −→ g[u] ∧ g[u] by

δX(a(u)) = [X(u, v), a(u)⊗ 1 + 1 ⊗ a(v)], (2.6)

for any a(u) ∈ g[u]. Obviously δX is a 1-cocycle and therefore induces a Lie bialgebra
structure on g[u].

The following result, proved in [33], shows that all Lie bialgebra structures corre-
sponding to rational solutions have the same classical double.

Let C[[u−1]] be the ring of formal power series in u−1 and C((u−1)) its field of
quotients. Consider the Lie algebras g[u] = g ⊗ C[u], g[[u−1]] = g ⊗ C[[u−1]] and
g(u−1)) = g ⊗ C((u−1)).

Let DX(g[u]) be the classical double corresponding to a rational solution X of the
CYBE. Then DX(g[u]) and g((u−1)) are isomorphic as Lie algebras, with inner product
which has the following form on g((u−1)):

Q(f(u), g(u)) = Resu=0K(f(u), g(u)), (2.7)

where f(u), g(u) ∈ g((u−1)).
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Remark 2.6. This result means in fact that g((u−1)) can be represented as a Manin
triple g((u−1)) = g[u] ⊕W , where W is a Lagrangian subalgebra with respect to the
invariant form Q.

In the case g = sl(n) all rational solutions were described in the following way:
Let dk = diag(1, ..., 1, u, ..., u) (k many 1’s), 0 ≤ k ≤ [n

2
]. Then it was proved

in [33] that every rational solution of the CYBE defines some Lagrangian subalgebra
W contained in d−1

k sl(n)[[u−1]]dk for some k. These subalgebras are in one-to-one
correspondence with pairs (L,B) verifying:

(1) L is a subalgebra of sl(n) such that L + Pk = sl(n), where Pk denotes the
maximal parabolic subalgebra of sl(n) not containing the root vector eαk

of the simple
root αk;

(2) B is a 2-cocycle on L which is nondegenerate on L ∩ Pk.
In case g = sl(2) one has just two non-standard rational r-matrices, up to gauge

equivalence:

X1(u, v) =
Ω

u− v
+ hα ∧ e−α (2.8)

and

X2(u, v) =
Ω

u− v
+ ue−α ⊗ hα − vhα ⊗ e−α, (2.9)

where eα = e12, e−α = e21 and hα = e11 − e22 is the usual basis of sl(2).

3 Quasi-trigonometric solutions of the CYBE

Another interesting case of infinite-dimensional Lie bialgebra structures on g[u] is pro-
vided by a class of trigonometric type solutions of the CYBE, called quasi-trigonometric
solutions. These solutions were first introduced in [21].

Definition 3.1. We say that a solution X of the CYBE is quasi-trigonometric if it is
of the form:

X(u, v) =
vΩ

u− v
+ p(u, v), (3.1)

where p(u, v) is a polynomial with coefficients in g ⊗ g.

The term quasi-trigonometric is motivated by the relationship between this type of
solutions of CYBE and trigonometric solutions in the Belavin-Drinfeld meaning. The
following result, whose proof we give in the Appendix, illustrates this fact.

Theorem 3.2. Let X(u, v) be a quasi-trigonometric solution of the CYBE. There exists
a holomorphic transformation and a change of variables such that X(u, v) becomes a
trigonometric solution, in the sense of Belavin-Drinfeld classification.

Example 3.3. A function X(u, v) = vΩ
u−v

+ r, where r ∈ g⊗ g, satisfies the CYBE if and
only if r is a solution of the modified classical Yang-Baxter equation, i.e.

r + r21 = Ω (3.2)
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[r12, r13] + [r12, r23] + [r13, r23] = 0. (3.3)

Let r0 denote the standard Drinfeld-Jimbo r-matrix. We fix a Cartan subalgebra h and
the associated root system. We choose a system of generators eα, e−α and hα, where α
is a positive root, such that K(eα, e−α) = 1. Then

r0 =
1

2
(
∑

α>0

eα ∧ e−α + Ω), (3.4)

Correspondingly we have a quasi-trigonometric solution

X0(u, v) =
vΩ

u− v
+ r0. (3.5)

Definition 3.4. A quasi-trigonometric solution X(u, v) = vΩ
u−v

+ p(u, v) is called quasi-
constant if p(u, v) is a constant polynomial.

Proposition 3.5. Let Aut(g[u]) denote the group of automorphisms of g[u] considered
as an algebra over C[u]. Let X1 be a quasi-trigonometric solution and σ(u) ∈ Aut(g[u]).
Then

X2(u, v) = (σ(u) ⊗ σ(v))X1(u, v)

is also a quasi-trigonometric solution.

Proof. Let X1(u, v) = vΩ
u−v

+p(u, v). Since X2 obviously satisfies the CYBE, it is enough
to check that X2 is quasi-trigonometric. We have the following:

X2(u, v) =

(
v(σ(u) − σ(v))

u− v
⊗ σ(v)

)
Ω +

v

u− v
(σ(v) ⊗ σ(v))Ω+

+(σ(u) ⊗ σ(v))p(u, v).

Let p1(u, v) := (v(σ(u)−σ(v))
u−v

⊗ σ(v))Ω and p2(u, v) := (σ(u) ⊗ σ(v))p(u, v). These are
polynomial functions in u, v. Since (σ(v) ⊗ σ(v))Ω = Ω, we obtain

X2(u, v) =
vΩ

u− v
+ p1(u, v) + p2(u, v)

and this ends the proof.

Definition 3.6. Two quasi-trigonometric solutions X1 and X2 are called gauge equiv-
alent if there exists σ(u) ∈ Aut(g[u]) such that

X2(u, v) = (σ(u) ⊗ σ(v))X1(u, v). (3.6)

Any quasi-trigonometric solution X of the CYBE induces a Lie bialgebra structure
on g[u]. Let δX be the 1-cocycle defined by

δX(a(u)) = [X(u, v), a(u)⊗ 1 + 1 ⊗ a(v)], (3.7)

6



for any a(u) ∈ g[u].
It is expected that all Lie bialgebra structures corresponding to quasi-trigonometric

solutions induce the same classical double.
Let us consider the direct sum of Lie algebras g((u−1)) ⊕ g, together with the fol-

lowing invariant bilinear form:

Q((f(u), a), (g(u), b)) = K(f(u), g(u))0 −K(a, b). (3.8)

Here the index zero means that we have taken the free term in the series expansion.

Remark 3.7. The Lie algebra g[u] is embedded into g((u−1))⊕g via a(u) 7−→ (a(u), a(0))
and is naturally identified with

V0 := {(a(u), a(0)); a(u) ∈ g[u]}. (3.9)

Consider the following Lie subalgebra of g((u−1)) ⊕ g:

W0 = {(a+ f(z), b) : f ∈ z−1g[[z−1]], a ∈ b+, b ∈ b−, ah + bh = 0}. (3.10)

Here h is the fixed Cartan subalgebra of g, b± are the positive (negative) Borel
subalgebras and ah denotes the Cartan part of a. We make the remark that V0 ⊕W0 =
g((u−1)) ⊕ g and both V0 and W0 are isotropic with respect to the form Q.

In order to show that all quasi-trigonometric solutions induce the same classical
double, we will first prove the following result:

Theorem 3.8. There exists a natural one-to-one correspondence between quasi - trigono-
metric solutions of the CYBE and linear subspaces W of g((u−1)) ⊕ g such that

1) W is a Lie subalgebra in g((u−1))⊕g such that W ⊇ u−Ng[[u−1]] for some N > 0;
2) W ⊕ V0 = g((u−1)) ⊕ g;
3) W is a Lagrangian subspace with respect to the inner product of g((u−1)) ⊕ g.

Proof. Let V0 and W0 be the Lie algebras given in Remark 3.7. We choose dual bases in
V0 and W0 respectively. Let {kj} be an orthonormal basis in h. The canonical basis of
V0 is formed by eαu

k, e−αu
k, kju

k for any α > 0, k > 0 and all j; (e−α, e−α), (eα, eα) for
any α > 0, and (kj , kj), for all j. The dual basis of W0 is the following: e−αu

−k, eαu
−k,

kju
−k for any α > 0, k > 0 and all j; (eα, 0) and (0,−e−α) for all α > 0, and 1

2
(kj,−kj),

for all j. Let us simply denote these dual bases by {vi} and {wi
0} respectively. We

notice that the quasi-trigonometric solution X0 can be written as

X0(u, v) = (τ ⊗ τ)(
∑

i

wi
0 ⊗ vi), (3.11)

where τ denotes the projection of g((u−1)) ⊕ g onto g((u−1)).
We denote by Homc(W0, V0) the space of those linear maps F : W0 −→ V0 such

that KerF ⊇ u−Ng[[u−1]] for some N > 0. It is the space of linear maps F which are
continuous with respect to the “u−1 - adic” topology.
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Let us contruct a linear isomorphism Φ : V0⊗V0 −→ Homc(W0, V0) in the following
way:

Φ(x⊗ y)(w0) = Q(w0, y) · x, (3.12)

for any x, y ∈ V0 and any w0 ∈W0. It is easy to check that Φ is indeed an isomorphism.
The inverse mapping is Ψ : Homcont(W0, V0) −→ V0 ⊗ V0 defined by

Ψ(F ) =
∑

i

F (wi
0) ⊗ vi. (3.13)

We make the remark that this sum is finite since F (wi
0) 6= 0 only for a finite number of

indices i.
The next step is to construct a bijection between Homc(W0, V0) and the set L of

linear subspaces W of g((u−1))⊕g such thatW⊕V0 = g((u−1))⊕g andW ⊇ u−Ng[[u−1]]
for some N > 0. This can be done in a very natural way. For any F ∈ Homcont(W0, V0)
we take

W (F ) = {w0 + F (w0);w0 ∈W0}. (3.14)

The inverse mapping associates to any W the linear function FW such that for any
w0 ∈ W0, FW (w0) = −v, uniquely defined by the decomposition w0 = w + v0 with
w ∈W and v0 ∈ V0.

Therefore we have a bijection between V0 ⊗ V0 and L. By a straightforward com-
putation, one can show that a tensor r(u, v) ∈ V0 ⊗ V0 satisfies the condition r(u, v) =
−r21(v, u) if and only if the linear subspace W (Φ(r)) is Lagrangian with respect to Q.

Let us suppose now that X(u, v) = X0(u, v)+r(u, v) and r(u, v) = −r21(v, u). Then
X(u, v) satisfies (2.4) if and only if W (Φ(r)) is a Lie subalgebra of g((u−1))⊕g. Indeed,
since r is unitary, we have that W (Φ(r)) is a Lagrangian subspace with respect to Q.
It is enough to check that X(u, v) satisfies (2.4) if and only if

Q([w1 + Φ(r)(w1), w2 + Φ(r)(w2)], w3 + Φ(r)(w3)) = 0 (3.15)

for any elements w1, w2 and w3 of W0. This follows by direct computations.
In conclusion, we see that a function X(u, v) = vΩ

u−v
+p(u, v) is a quasi-trigonometric

solution if and only if W (Φ(p − r0)) is a Lagrangian subalgebra of g((u−1)) ⊕ g. This
ends the proof.

Remark 3.9. If W is a Lagrangian subalgebra of g((u−1)) ⊕ g satisfying the conditions
of Theorem 3.8, then the corresponding solution X(u, v) is constructed in the following
way: take a basis {wi} inW which is dual to the canonical basis {vi} of V0 and construct
the tensor

r̃(u, v) =
∑

i

wi ⊗ vi. (3.16)

Let π denote the projection of g((u−1)) ⊕ g onto g[u] which is induced by the
decomposition g((u−1)) ⊕ g = V0 ⊕W0. Explicitly,

π(anz
n + ... + a0 + a−1u

−1 + ..., b) = anu
n + ... + a1u+ (3.17)
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+
1

2
(a0h + bh) + a0− + b+.

Here a0 = a0h + a0+ + a0− and b = bh + b+ + b− are the decompositions with respect to
g = h ⊕ n+ ⊕ n−. Then

X(u, v) = X0(u, v) + (π ⊗ π)(r̃(u, v)). (3.18)

At this point we note the following fact that we will prove in Appendix:

Proposition 3.10. Let W be a Lie subalgebra satisfying conditions 2) and 3) of Theo-
rem 3.8. Let r̃ be constructed as in (3.16). Assume r̃ induces a Lie bialgebra structure
on g[u] by δ

er(a(u)) = [r̃(u, v), a(u) ⊗ 1 + 1 ⊗ a(v)]. Then W ⊇ u−Ng[[u−1]] for some
positive N .

For any quasi-trigonometric solution X of the CYBE denote by DX(g[u]) the clas-
sical double of g[u] corresponding to X.

Theorem 3.11. For any quasi-trigonometric solution X of the CYBE there exists an
isomorphism of Lie algebra DX(g[u]) and g((u−1)) ⊕ g identical on g[u], which trans-
forms the canonical bilinear form on DX(g[u]) to the form Q.

Proof. One can easily check that if W is a Lagrangian subalgebra of g((u−1)) ⊕ g,
corresponding to a quasi-trigonometric solution X(u, v) = vΩ

u−v
+ p(u, v), then W is

isomorphic to (g[u])∗ with the Lie algebra structure induced by X.
Indeed, with the notation introduced in Theorem 3.8, let F := FW . It is enough to

check that for any v0 ∈ V0 and w1, w2 ∈W0 the following equality is satisfied:

Q(v0, [w1 + F (w1), w2 + F (w2)]) =< δX(v0), w1 ⊗ w2 >,

where <,> denotes the pairing between V ⊗2
0 and W⊗2

0 induced by Q. This equality is
implied by the following identities:

Q(v0, [w1, w2]) =< δX0(v0), w1 ⊗ w2 >,

Q(v0, [F (w1), w2]) =< [p− r0, 1 ⊗ v0], w1 ⊗ w2 >,

Q(v0, [w1, F (w2)]) =< [p− r0, v0 ⊗ 1], w1 ⊗ w2 > .

Remark 3.12. Theorem 3.11 states in particular that all quasi-trigonometric solutions of
CYBE are in the same twisting class. This can be seen directly, since by the definition
of quasi-trigonometric solutions they are related to the solution (3.5) by classical twists.

Theorem 3.13. Let X1 and X2 be quasi-trigonometric solutions of the CYBE. Suppose
that W1 and W2 are the corresponding Lagrangian subalgebras of g((u−1)) ⊕ g. Let
σ(u) ∈ Aut(g[u]) and σ̃(u) be the automorphism of g((u−1)) ⊕ g induced by σ(u). The
following conditions are equivalent:

1) X1(u, v) = (σ(u) ⊗ σ(v))X2(u, v);
2) W1 = σ̃(u)W2.
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Proof. 1) ⇒ 2). Let us begin by proving this for the particular case X1 = X0 and
X2 = (σ(u) ⊗ σ(v))X0(u, v). The Lagrangian subalgebra corresponding to X0 is W0

given by (3.10). On the other hand, one can check the Lagrangian subalgebra W2,
corresponding to the solution X2, consists of elements

f̃ :=
∑

i

(f, σ̃(vi)) · σ̃(wi
0) =

∑

i

(σ̃−1(f), vi) · σ̃(wi
0),

for any f ∈W0. Here {vi} and {wi
0} are the dual bases of V0 and W0 introduced in the

proof of Theorem 3.8. We show that W2 = σ̃(W0).
Let g denote the projection of σ̃−1(f) onto W0 induced by the decomposition V0 ⊕

W0 = g((u−1)) ⊕ g. Then

g =
∑

i

(σ̃−1(f), vi) · w
i
0

which implies that f̃ = σ̃(g). Therefore W2 ⊆ σ̃(W0). The other inclusion is similar.
Let us pass to the general case. IfX1(u, v) = X0(u, v)+r(u, v) is a quasi-trigonometric

solution with r(u, v) =
∑
aku

k⊗bjv
j, then the corresponding W1 consists of elements of

the form f+
∑

(f, bju
j)aku

k, for any f in W0. Now let X2(u, v) = (σ(u)⊗σ(v))X1(u, v).
The corresponding subalgebra W2 is formed by elements of the form

f̃r :=
∑

i

(f, σ̃(vi)) · σ̃(wi
0) +

∑
(f, σ̃(bju

j))σ̃(aku
k).

It is easy to see that f̃r =σ̃(h), where h := g +
∑

(g, bju
j)aku

k and g is the projection
of σ̃−1(f) onto W0. These considerations prove that σ̃(W1) = W2.

2) ⇒ 1). Suppose that W2 = σ̃(W1). Let X̃2 := (σ(u)⊗σ(v))X1(u, v). It is a quasi-

trigonometric solution which has a corresponding Lagrangian subalgebra W̃2. Because
1) ⇒ 2) we obtain that W̃2 = σ̃(W1) and thus W2 = W̃2. Since the correspondence

between solutions and subalgebras is one-to-one, we get that X2 = X̃2.

Definition 3.14. We will say that W1 and W2 are gauge equivalent (with respect to
Aut(g[u])) if condition 2) of Theorem 3.13 is satisfied.

Theorem 3.15. Let X(u, v) = vΩ
u−v

+ p(u, v) be a quasi-trigonometric solution of the
CYBE and W the corresponding Lagrangian subalgebra of g((u−1)) ⊕ g. Then the fol-
lowing are equivalent:

1) p(u, v) is a constant polynomial.
2) W is contained in g[[u−1]] ⊕ g.

Proof. We keep the notations from the proof of Theorem 3.8 and also those from Remark
3.9. Let r(u, v) = p(u, v) − r0 and F = Φ(r(u, v)). If p(u, v) is constant, then F (w0) ∈
g ⊗ g for any w0 ∈ W0. Therefore W (F ) ⊆ g[[u−1]] ⊕ g. Conversely, let us suppose
that W is included in g[[u−1]] ⊕ g. The orthogonal of g[[u−1]] ⊕ g with respect to Q is
obviously u−1g[[u−1]]. Since W is a Lagrangian subalgebra, it follows that W contains
u−1g[[u−1]]. According to the previous remark, r(u, v) = (π ⊗ π)(r̃(u, v)), where π is
the projection onto g[u] induced by the decomposition g((u−1)) ⊕ g = V0 ⊕ W0 and
r̃(u, v) =

∑
iw

i ⊗ vi. Now it is clear that r is a constant. This ends the proof.
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4 Classification of quasi-trigonometric solutions

We have seen that gauge equivalent solutions correspond to gauge equivalent subalge-
bras W . Thus, the classification of quasi-trigonometric solutions is equivalent to the
classification of W satisfying the conditions of Theorem 3.8. In order to classify such W
we will use a method from [35] which allows us to embed W in a suitable C-subalgebra
of g((u−1)) ⊕ g.

Having fixed a Cartan subalgebra h of g, let R be the correspondig set of roots and
Γ the set of simple roots. Denote by gα the root space corresponding to a root α. Let
h(R) be the set of all h ∈ h such that α(h) ∈ R for all α ∈ R. Consider the valuation
on C((u−1)) defined by v(

∑
k≥n aku

−k) = n. For any root α and any h ∈ h(R), set
Mα(h):={f ∈ C((u−1)) : v(f) ≥ α(h)}. Consider

Oh := h[[u−1]] ⊕ (⊕α∈RMα(h) ⊗ gα). (4.1)

As a direct corollary of Theorem 4 from [35], the following result can be deduced:

Theorem 4.1. Up to a gauge equivalence, any subalgebra W which corresponds to a
quasi-trigonometric solution can be embedded into Oh × g, where h is a vertex of the
following standard simplex {h ∈ h(R) : α(h) ≥ 0 for all α ∈ Γ and αmax ≤ 1}.

Vertices of the above simplex correspond to vertices of the extended Dynkin diagram
of g, the correspondence being given by the following rule:

0 ↔ αmax

hi ↔ αi,

where αi(hj) = δij/kj and kj are given by the relation
∑
kjαj = αmax. We will write

Oα instead of Oh if α is the root which corresponds to the vertex h.

Remark 4.2. We have Oαmax = g[[u−1]]. We have already seen that a quasi-trigonometric
solution is quasi-constant if and only if its corresponding W is embedded into Oαmax ×g.

Remark 4.3. It might happen that two Lagrangian subalgebras W1 and W2 are gauge
equivalent even though they are embedded into different Oα1 × g and Oα2 × g. If there
exists an automorphism of the Dynkin diagram of g taking α1 into α2, then W1 and W2

are gauge equivalent and the corresponding quasi-trigonometric solutions as well.

Let us suppose now that α is a simple root which can be sent to −αmax by means
of an automorphism. Such a root has coefficient one in the decomposition of αmax

and will be called a multiplicity free root. Let us denote by pα the standard parabolic
subalgebra of g generated by all root vectors corresponding to simple roots and their
opposite except −α. Let lα denote the set of all pairs in pα × pα with equal Levi
components. This is a Lagrangian subalgebra of g × g, where g × g has been endowed
with the following invariant bilinear form

Q′((a, b), (c, d)) := K(a, c) −K(b, d). (4.2)
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Theorem 4.4. The set of subalgebrasW ⊆ Oα×g, corresponding to quasi-trigonometric
solutions, is in a one-to-one correspondence with the set of Lagrangian subalgebras l of
g × g, with respect to the bilinear form Q′, which satisfy the condition l ⊕ lα = g × g.

Proof. The proof is based on the following result from [34]: Let G be the simply con-
nected Lie group with Lie algebra g. Denote by Gad the Lie group G/Z(G). Let H be
the Cartan subgroup with Lie algebra h and Had its image in Gad. If α is a multiplicity
free root, then Oα and Oαmax are conjugate by an element of Had(C((u−1))).

Suppose now that W ⊆ Oα × g, then (Oα × g)⊥ ⊆W⊥ = W . It follows that

W

(Oα × g)⊥
⊆

Oα × g

(Oα × g)⊥
∼=

Oαmax × g

(Oαmax × g)⊥
∼= g × g. (4.3)

Denote by l the image of the quotient W
(Oα×g)⊥

in g × g. One can check that l is a

Lagrangian subalgebra of g × g with respect to Q′.
Moreover the image of g[u] in g×g, after passing to the quotient as above, is precisely

lα. Since W is transversal to g[u], it follows that l should be transversal to lα.
Conversely, if l is a Lagrangian subalgebra transversal to lα in g× g, then its corre-

sponding lift, W , is transversal to g[u].

We see that in the case of multiplicity free roots, the classification of quasi-trigonometric
solutions reduces to the following

Problem. Given a multiplicity free root α, find all subalgebras l of g × g which
build a Manin triple (Q′, lα, l), with respect to the invariant bilinear form Q′ on g × g.

This problem was solved in [30] by using the classification of Manin triples for
complex reductive Lie algebras which had been obtained by P. Delorme in [6]. The
classification of Manin triples was expressed in terms of so-called generalized Belavin-
Drinfeld data. Let us recall Delorme’s construction.

Let r be a finite-dimensional complex, reductive, Lie algebra and B a symmetric,
invariant, nondegenerate bilinear form on r. The goal in [6] is to classify all Manin
triples of r up to conjugacy under the action on r of the simply connected Lie group R
whose Lie algebra is r.

One denotes by r+ and r− respectively the sum of the simple ideals of r for which
the restriction of B is equal to a positive (negative) multiple of the Killing form. Then
the derived ideal of r is the sum of r+ and r−.

Let j0 be a Cartan subalgebra of r, b0 a Borel subalgebra containing j0 and b′
0 be its

opposite. Choose b0 ∩ r+ as Borel subalgebra of r+ and b′
0 ∩ r− as Borel subalgebra of

r−. Denote by Σ+ (resp., Σ−) the set of simple roots of r+ (resp., r−) with respect to
the above Borel subalgebras. Let Σ = Σ+ ∪ Σ− and denote by W = (Hα, Xα, Yα)α∈Σ a
Weyl system of generators of [r, r].

Definition 4.5 (Delorme, [6]). One calls (A,A′, ia, ia′) generalized Belavin-Drinfeld data
with respect to B when the following five conditions are satisfied:

(1) A is a bijection from a subset Γ+ of Σ+ on a subset Γ− of Σ− such that

B(HAα, HAβ) = −B(Hα, Hβ), α, β ∈ Γ+. (4.4)
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(2) A′ is a bijection from a subset Γ′
+ of Σ+ on a subset Γ′

− of Σ− such that

B(HA′α, HA′β) = −B(Hα, Hβ), α, β ∈ Γ′
+. (4.5)

(3) If C = A−1A′ is the map defined on dom(C) = {α ∈ Γ′
+ : A′α ∈ Γ−} by

Cα = A−1A′α, then C satisfies:
For all α ∈ dom(C), there exists a positive integer n such that α,..., Cn−1α ∈ dom(C)

and Cnα /∈ dom(C).
(4) ia (resp., ia′) is a complex vector subspace of j0, included and Lagrangian in the

orthogonal a (resp., a′) to the subspace generated by Hα, α ∈ Γ+∪Γ− (resp., Γ′
+∪Γ′

−).
(5) If f is the subspace of j0 generated by the family Hα + HAα, α ∈ Γ+, and f′ is

defined similarly, then
(f ⊕ ia) ∩ (f′ ⊕ ia′) = 0. (4.6)

Let R+ be the set of roots of j0 in r which are linear combinations of elements of Γ+.
One defines similarly R−, R′

+ and R′
−. The bijections A and A′ can then be extended

by linearity to bijections from R+ to R− (resp., R′
+ to R′

−). If A satisfies condition (1),
then there exists a unique isomorphism τ between the subalgebra m+ of r spanned by
Xα, Hα and Yα, α ∈ Γ+, and the subalgebra m− spanned by Xα, Hα and Yα, α ∈ Γ−,
such that τ(Hα) = HAα, τ(Xα) = XAα, τ(Yα) = YAα for all α ∈ Γ+. If A′ satisfies (2),
then one defines similarly an isomorphism τ ′ between m′

+ and m′
−.

Theorem 4.6 (Delorme, [6]). (i) Let BD = (A,A′, ia, ia′) be generalized Belavin-
Drinfeld data, with respect to B. Let n be the sum of the root spaces relative to roots α of
j0 in b0, which are not in R+∪R−. Let i := k⊕ ia⊕n, where k := {X+τ(X) : X ∈ m+}.

Let n′ be the sum of the root spaces relative to roots α of j0 in b′
0, which are not in

R′
+ ∪ R′

−. Let i′ := k′ ⊕ ia′ ⊕ n′, where k′ := {X + τ ′(X) : X ∈ m′
+}.

Then (B, i, i′) is a Manin triple.
(ii) Every Manin triple is conjugate by an element of R to a unique Manin triple

of this type.

Remark 4.7. One says that the Manin triple constructed in (i) is associated to the
generalized Belavin-Drinfeld data BD and the system of Weyl generators W. Such a
Manin triple will be denoted by TBD,W .

Recall that Γ denotes the set of simple roots relative to a Cartan subalgebra h of
g. For a subset S of Γ, let [S] be the set of roots in the linear span of S. Let mS :=
h +

∑
α∈[S] gα, nS :=

∑
α>0,α/∈[S] gα, pS := mS + nS . We also consider gS := [mS,mS],

hS := h∩gS and ζS := {x ∈ h : α(x) = 0, ∀α ∈ S}. Consider the Lagrangian subalgebra
lS of g × g which consists of all pairs from pS × pS with equal components in mS.

In [30], the general result of Delorme was used in order to determine Manin triples
of the form (Q′, lS, l). This enables one to give the classification of all Lagrangian
subalgebras l of g × g which are transversal to a given lS. We devote the rest of this
section to presenting the main results of [30]. We refer to [30] for the proofs.

First of all, let us choose a suitable system of Weyl generators for g × g. Let b be
a Borel subalgebra of g containing the Cartan subalgebra h. Then b0 := b × b is a
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Borel subalgebra of g × g containing the Cartan subalgebra j0 := h × h. One denotes
by Σ+ the set of pairs (α, 0), and by Σ− the set of pairs (0,−α), where α ∈ Γ. Let
Σ := Σ+ ∪ Σ−.

Let (Xα, Yα, Hα)α∈Γ be an arbitrary Weyl system of generators for g. A system of
Weyl generators of g × g with respect to this choice of simple roots can be chosen as
follows: X(α,0) = (Xα, 0), H(α,0) = (Hα, 0), Y(α,0) = (Yα, 0), X(0,−α) = (0, Yα), H(0,−α) =
(0,−Hα), Y(0,−α) = (0, Xα). A Manin triple associated to some generalized Belavin-
Drinfeld data BD for g × g with respect to this Weyl system will simply be noted by
TBD.

Let θ̄S be the automorphism of gS uniquely defined by the properties θ̄S(Xα) = Yα,
θ̄S(Yα) = Xα and θ̄S(Hα) = −Hα for all α ∈ S. Recall that there is a short exact
sequence

1 −→ GS −→ Aut(gS) −→ AutS −→ 1 (4.7)

where AutS denotes the group of automorphisms of the Dynkin diagram of gS. Let θS

be the image of θ̄S in AutS. Therefore θ̄S can be written uniquely as

θ̄S = ψSAdg0, (4.8)

where g0 ∈ GS and ψS is the unique automorphism of gS satisfying the properties:
ψS(Xα) = XθS(α), ψS(Yα) = YθS(α), ψS(Hα) = HθS(α) for all α ∈ S.

Theorem 4.8. For any Manin triple (Q′, lS, l), there exists a unique generalized Belavin-
Drinfeld data BD = (A,A′, ia, ia′) where A : S × {0} −→ {0} × (−S), A(α, 0) =
(0,−θS(α)) and ia = diag(ζS), such that (Q′, lS, l) is conjugate to the Manin triple
TBD = (Q′, i, i′).

Moreover, up to a conjugation which preserves lS, the Lagrangian subalgebra l is of
the form

l = (id × Adg0)(i
′),

where g0 ∈ GS is the unique element from the decomposition (4.8).

Lemma 4.9. Let A : S×{0} −→ {0}× (−S), A(α, 0) = (0,−θS(α)) and ia = diag(ζS).
A quadruple (A,A′, ia, ia′) is generalized Belavin-Drinfeld data if and only if the pair
(A′, ia′) satisfies the following conditions:

(1) A′ : Γ1 × {0} −→ {0} × (−Γ2) is given by an isometry Ã′ between two subsets
Γ1 and Γ2 of Γ : A′(α, 0) = (0,−Ã′(α)).

(2) Let dom(Ã′, S) := {α ∈ Γ1 : Ã′(α) ∈ S ∩ Γ2}. Then for any α ∈ dom(Ã′, S)
there exists a positive integer n such that α, (θSÃ′)(α),..., (θSÃ′)n−1(α) ∈ dom(Ã′, S)
but (θSÃ′)n(α) /∈ dom(Ã′, S).

(3) Consider ∆S := {(h+ h′,−ψS(h) + h′) : h ∈ hS, h
′ ∈ ζS}. Let f′ be the subspace

of h × h spanned by pairs (Hα,−HÃ′(α)) for all α ∈ Γ1. Let ia′ be Lagrangian subspace
of a′ := {(h1, h2) ∈ h × h : α(h1) = 0, β(h2) = 0, ∀α ∈ Γ1, ∀β ∈ Γ2}. Then

(f′ ⊕ ia′) ∩ ∆S = 0. (4.9)
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Definition 4.10. A triple (Γ1,Γ2, Ã′) is called S-admissible if condition (2) of Lemma
4.9 is satisfied.

Let Ω0 denote the Cartan component of the Casimir element Ω. Let π1 (resp., π2)
be the projection of h onto hS (resp., ζS). Let K0 be the restriction of the Killing form
K of g to h, which permits an identification between h and h∗. If R is an endomorphism
of h, denote by R∗ the adjoint of R regarded as an endomorphism of h.

Lemma 4.11. (i) Suppose that (f′ ⊕ ia′) ∩ ∆S = 0. Then there exists a unique linear
endomorphism R of h such that

f′ ⊕ ia′ = {(Rh,R′h) : h ∈ h}, (4.10)

where R′h := π1(h) − π2(h) − ψSπ1(Rh) + π2(Rh), and

(ψSπ1 + π2)R + R∗(ψSπ1 + π2) = idh. (4.11)

(ii) There exists a bijection between the Lagrangian subspaces ia′ of a′ satisfying the
condition (f′ ⊕ ia′) ∩ ∆S = 0, and the endomorphisms R of h verifying (4.11) and the
additional condition:

R((ψSπ1 + π2)(Hγ) + (π2 − π1)(HÃ′(γ))) = Hγ, ∀γ ∈ Γ1. (4.12)

(iii) There exists a bijection between endomorphisms R of h verifying (4.11) and (4.12)
and tensors r ∈ h ⊗ h satisfying the following conditions:

(id ⊗ (ψSπ1 + π2))(r) + ((ψSπ1 + π2) ⊗ id)(r21) = Ω0, (4.13)

((Ã′(γ)(π2 − π1) ⊗ id)(r) = ((ψSπ1 + π2) ⊗ γ)(r), ∀γ ∈ Γ1. (4.14)

Corollary 4.12. Let A : S × {0} −→ {0} × (−S), A(α, 0) = (0,−θS(α)) and ia =
diag(ζS). There exists a one-to-one correspondence between generalized Belavin-Drinfeld
data (A,A′, ia, ia′) and pairs formed by an S-admissible triple (Γ1,Γ2, Ã′) and a tensor
r ∈ h ⊗ h satisfying conditions (4.13), (4.14).

Theorem 4.13. Suppose that l is a Lagrangian subalgebra of g × g transversal to lS.
Then, up to a conjugation which preserves lS, one has l = (id × Adg0)(i

′), where i′ is
constructed from an S-admissible triple (Γ1,Γ2, Ã′) and a tensor r ∈ h ⊗ h satisfying
conditions (4.13), (4.14).

Let α be a multiplicity free root of g. Set S = Γ \ {α}. We write θα instead of θS

and ψα instead of ψS. We make the remark that a triple (Γ1,Γ2, Ã′) is S-admissible if
and only if it is in one of the two situations:

I. If α /∈ Γ2, then (Γ1, θα(Γ2), θαÃ′) is an admissible triple in the sense of [1].
II. If α ∈ Γ2 and Ã′(β) = α, for some β ∈ Γ1, then (Γ1 \ {β}, θα(Γ2 \ {α}), θαÃ′) is

an admissible triple in the sense of [1].
By applying Theorem 4.13 in the particular case S = Γ \ {α} and working with the

tensor r̃ := ((ψαπ1 + π2) ⊗ id)(r) instead of r, one obtains
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Theorem 4.14. Let α be a multiplicity free root. Suppose that l is a Lagrangian
subalgebra of g× g transversal to lα. Then, up to a conjugation which preserves lα, one
has l = (id × Adg0)(i

′), where i′ is constructed from a pair formed by (Γ1,Γ2, Ã′) and a
tensor r̃ ∈ h ⊗ h satisfying the following conditions:

(1) (Γ1,Γ2, Ã′) is of type I or II from above.
(2) r̃ satisfies

r̃ + r̃21 = Ω0, (4.15)

(3) If (Γ1,Γ2, Ã′) is of type I, then r̃ satisfies

(θαÃ′(γ) ⊗ id)(r̃) + (id ⊗ γ)(r̃) = 0, ∀γ ∈ Γ1. (4.16)

(4) If (Γ1,Γ2, Ã′) is of type II and Ã′(β) = α, then r̃ satisfies (4.16) for all γ ∈
Γ1 \ {β} and

(α(π2 − ψαπ1) ⊗ id)(r̃) = (id ⊗ β)(r̃). (4.17)

The construction of the quasi-trigonometric solutions can be summed up as follows.
Suppose that (Γ1,Γ2, Ã′) is of type I or II from above. Then one finds the tensor r̃ and
consequently r. This induces a unique endomorphism R of h, which in turn enables
one to construct the subspace ia′, according to (4.10). This is enough to reconstruct
i′. Then l := (id × Adg0)(i

′) is a Lagrangian subalgebra of g × g which is transversal
to lα. Moreover, l can be lifted to a Lagrangian subalgebra W of g((u−1)) ⊕ g which
is transversal to g[u]. By choosing two appropriate dual bases in g[u] and W respec-
tively, we reconstruct the quasi-trigonometric solution X(u, v). We will illustrate this
procedure by several examples.

Example 4.15. Quasi-trigonometric solutions for sl(2). Let e, f, h be the canonical
basis of sl(2) and α be the simple root with root vector e. Then Γ = {α}. We have
two cases:

I. Γ1 = Γ2 = ∅ and r̃ = 1
4
h ⊗ h. Correspondingly we get one quasi-trigonometric

solution:

X0(u, v) =
vΩ

u− v
+ r0, (4.18)

where Ω = e⊗f +f⊗e+ 1
2
h⊗h and r0 = e⊗f + 1

4
h⊗h is the Drinfeld-Jimbo r-matrix

for sl(2).
II. Γ1 = Γ2 = {α}, Ã′ = id and r̃ = 1

4
h⊗ h. The corresponding quasi-trigonometric

solution is
X1(u, v) = X0(u, v) + (u− v)e⊗ e. (4.19)

Example 4.16. Quasi-trigonometric solutions for sl(3). Denote by α the simple
root with root vector e12 and by β the one with root vector e13. Then Γ = {α, β} and
both roots are singular. We will present the quasi-trigonometric solutions corresponding
to the root α.

I. Γ1 = Γ2 = ∅. Then r̃ = a(e11−e33)⊗(e22−e33)+b(e22−e33)⊗(e11−e33)+
1
3
(e11−

e33) ⊗ (e11 − e33) + 1
3
(e22 − e33) ⊗ (e22 − e33), where a + b = −1

3
. The corresponding
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quasi-trigonometric solution is quasi-constant:

X0(u, v) =
vΩ

u− v
+ r0, (4.20)

where r0 is the Drinfeld-Jimbo non-skewsymmetric r-matrix in sl(3).
II. Γ1 = {α}, Γ2 = {α}, Ã′(α) = α. Then r̃ = −1

3
(e11 − e33) ⊗ (e22 − e33) + 1

3
(e11 −

e33)⊗ (e11 − e33) + 1
3
(e22 − e33)⊗ (e22 − e33). It follows that the corresponding solution

of the CYBE is again quasi-constant:

X1(u, v) =
vΩ

u− v
+ r1, (4.21)

where r1 is another non-skewsymmetric r-matrix in sl(3).
III. Γ1 = {α}, Γ2 = {β}, Ã′(α) = β. Then r̃ = −1

3
(e22 − e33)⊗ (e11 − e33) + 1

3
(e11 −

e33) ⊗ (e11 − e33) + 1
3
(e22 − e33) ⊗ (e22 − e33). This data allows one to construct the

following Lagrangian subalgebra which is transversal to lα:

l = {







a b 0
c d 0
∗ ∗ −a− d


 ,




−a− d 0 0
∗ a b
∗ c d





 : a, b, c, d ∈ C}. (4.22)

Correspondingly, one obtains the following solution:

X2(u, v) = X0(u, v) − u(e12 ⊗ e32) + v(e32 ⊗ e12) −
1

6
(e11 − e22) ⊗ (e22 − e33). (4.23)

III’. Γ1 = {β}, Γ2 = {α}, Ã′(β) = α and the same r̃ as in III. We have a quasi-
trigonometric solution which is gauge equivalent to (4.23).

IV. Γ1 = Γ2 = {α, β}, Ã′(α) = β, Ã′(β) = α. Then r̃ = −1
3
(e22 − e33)⊗ (e11 − e33)+

1
3
(e11 − e33) ⊗ (e11 − e33) + 1

3
(e22 − e33) ⊗ (e22 − e33). This data induces the following

Lagrangian subalgebra:
l = {(X, TXT−1) : X ∈ sl(3)},

where T = e13 + e21 + e32. This is a subalgebra transversal to lα.
The corresponding quasi-trigonometric solution is

X3(u, v) = X0(u, v) − u(e12 ⊗ e32 + e13 ⊗ e12 + e12 ⊗ e13)+ (4.24)

v(e32 ⊗ e12 + e12 ⊗ e13 + e13 ⊗ e12) + (e13 + e23) ∧ e23 +
1

6
(e11 − e33) ∧ (e11 − e22).

Remark 4.17. Solutions corresponding to the simple root β are gauge equivalent to the
solutions corresponding to α. The solutions with non-constant polynomial part are the
following:

Y2(u, v) = X0(u, v) + v(e21 ⊗ e23) − (ue23 ⊗ e21) −
1

6
(e11 − e22) ⊗ (e22 − e33), (4.25)
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which is equivalent to X2(u, v), and

Y3(u, v) = X0(u, v) − u(e13 ⊗ e23 + e23 ⊗ e13 + e23 ⊗ e21)+ (4.26)

v(e13 ⊗ e23 + e23 ⊗ e13 + e21 ⊗ e23) + (e13 + e21) ∧ e12 +
1

6
(e11 − e22) ∧ (e22 − e33),

which is equivalent to X3(u, v).

Example 4.18. Two examples of quasi-trigonometric solutions for sl(N) of

Cremmer-Gervais type. We reconstruct two Lagrangian subalgebras which pro-
vide two quasi-trigonometric solutions for g = sl(N). These Lagrangian subalgebras
are transversal to lα1 and are related to the Cremmer-Gervais Lie bialgebra structure
on g.

Let us consider the set of simple roots Γ = {α1, ..., αN−1} and take S = Γ \ {α1}.
Let us denote by (Xα, Yα, Hα)α∈Γ the standard Weyl system. In order to construct an
S-admissible triple (Γ1,Γ2, Ã′), let us first determine the map θS : S −→ S. One can
easily check that θS is the following involution: θS(αi) = αN+1−i, for all i = 2, ..., N−1,
and that g0 = TN−1 is the (N − 1)× (N − 1) matrix with 1 on the second diagonal and
0 elsewhere.

I. Consider Γ1 = {α1, ..., αN−2}, Γ2 = {α2, ..., αN−1} and Ã′(αi) = αN−i. This is
an S-admissible triple. Indeed, θSÃ′(αi) = αi+1 and (Γ1, θS(Γ2), θSÃ′) is an admissible
triple in the sense of [1], which is known to be related to the Cremmer-Gervais Lie
bialgebra structure on g (see [5]). The tensor r̃ satisfying (4.15), (4.16) is the Cartan
part of the Cremmer-Gervais non-skewsymmetric constant r-matrix.

Let n−
αN−1

denote the sum of all eigenspaces of negative roots which contain αN−1

in their decomposition. Let n−
α1

be the sum of all eigenspaces of negative roots which
contain α1 in their decomposition. One can easily check that the Lagrangian subalgebra
i′ constructed from this data is the following: i′ = n′ ⊕ ia′ ⊕ k′, where n′ = n−

αN−1
× n−

α1
,

ia′ = span((diag(1, 1, ..., 1,−N +1), (diag(−N +1, 1, ..., 1)) and k′ is spanned by the set
of pairs (Xαi

, YαN−i
), (Yαi

, XαN−i
), (Hαi

,−HαN−i
), i = 1, ..., N − 2. Let us consider g0

as an element of SL(N) and take

l1 = (id × Adg0)(i
′) = n−

αN−1
× n−

α1
⊕ {(x, τ(x)) : x ∈ mαN−1

}, (4.27)

where τ(eij) = ei+1,j+1 and mαN−1
denotes the reductive part of pαN−1

. This Lagrangian
subalgebra is transversal to lα1 and therefore induces a quasi-trigonometric solution
corresponding to α1. Denote this solution by X1(u, v).

II. We consider Γ1 = Γ2 = Γ and Ã′(αi) = αN−i. This is indeed an S-admissible
triple since (Γ1\{αN−1}, θS(Γ2\{α1}), θSÃ′) is an admissible triple in the sense of [1]. We
have Γ1 \ {αN−1} = {α1, ..., αN−2}, θS(Γ2 \ {α1}) = {α2, ..., αN−1} and θSÃ′(αi) = αi+1.
The tensor r̃, which satisfies the system (4.15), (4.16) for γ = αi, i = 1, ..., N − 2 and
(4.17), is as in case I.

We obtain i′ = {(X,AdU(X)) : X ∈ sl(N)}, where U ∈ SL(N) is the matrix with
1 on the second diagonal and zero elsewhere. Finally take

l2 = (id × Adg0)(i
′) = {(X,AdT (X)) : X ∈ sl(N)}, (4.28)
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where T = g0U = e1N +e21+e32+...+eN,N−1. This Lagrangian subalgebra is transversal
to lα1 and consequently provides a quasi-trigonometric solution X2(u, v), corresponding
again to the root α1.

SolutionsX1(u, v) andX2(u, v) will be called quasi-trigonometric solutions of Cremmer-
Gervais type. Regarding their quantization, we will quantize instead the following so-
lutions:

X ′
1(u, v) = (σ ⊗ σ)X1(u, v), (4.29)

X ′
2(u, v) = (σ ⊗ σ)X2(u, v), (4.30)

where σ(A) = −At.

5 Quantum twists and their affinization

The aim of the second part of our paper is to quantize certain quasi-trigonometric
solutions of the CYBE and the corresponding Lie bialgebra stuctures on g[u] in case
g = sl(N). We already know that all of them are in the same twisting class and there-
fore the corresponding quantum groups are isomorphic as algebras but with different
comultiplications. However, these comultiplications can be obtained from each other
via quantum twisting (see [17], [21]).

So, we would like to outline some basic elements of quantum twisting of Hopf al-
gebras (see [14], p. 84-85). Suppose given a Hopf algebra A := A(m,∆, ǫ, S) with a
multiplication m : A ⊗ A → A, a coproduct ∆ : A → A ⊗ A, a counit ǫ : A → C, and
an antipode S : A→ A.

An invertible element F ∈ A⊗A, F =
∑

i f
(1)
i ⊗ f

(2)
i is called a quantum twist if it

satisfies the cocycle equation

F 12(∆ ⊗ id)(F ) = F 23(id ⊗ ∆)(F ) , (5.1)

and the ”unital” normalization condition

(ǫ⊗ id)(F ) = (id ⊗ ǫ)(F ) = 1 . (5.2)

Now we can define a twisted Hopf algebra A(F ) := A(F )(m,∆(F ), ǫ, S(F )) which has
the same multiplication m and the counit mapping ǫ but the twisted coproduct and
antipode

∆(F )(a) = F∆(a)F−1, S(F )(a) = u S(a)u−1, u =
∑

i

f
(1)
i S(f

(2)
i ) (a ∈ A) .

(5.3)
The Hopf algebra A is called quasitriangular if it has an additional invertible element

(universal R-matrix) R, which relates the coproduct ∆ with its opposite coproduct ∆̃
by the transformation

∆̃(a) = R∆(a)R−1 (a ∈ A) , (5.4)
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with R satisfying the quasitriangularity conditions

(∆ ⊗ id)(R) = R13R23 , (id ⊗ ∆)(R) = R13R12 . (5.5)

The twisted (”quantized”) Hopf algebra A(F ) is also quasitriangular with the universal
R-matrix R(F ) defined as follows

R(F ) = F 21RF−1 , (5.6)

where F 21 =
∑

i f
(2)
i ⊗ f

(1)
i . So, the first step is to find a quantization of the Lie

bialgebra structure on g[u] defined by X0(u, v), which was described in Section 3. It is
well-known that the corresponding quantum group is the so-called Uq(g[u]) which is a
parabolic subalgebra of the quantum affine algebra Uq(ĝ). In case sl(N) this algebra
will be defined below. However, it turns out that it is more convenient to work with its
extended version Uq(glN [u]).

The second step is to find explicit formulas for the quantum twists. We use two
methods.

A). Affinization by Hopf isomorphism. Let F be a quantum twist and let Sup(F )
be a minimal Hopf subalgebra, whose tensor square contains F , which we call the
support of F . Similarly we define the support of a classical twist as the minimal Lie
subbialgebra, whose tensor square contains the given classical twist.

It turns out that for certain quasi-trigonometric solutions for sl(N), the correspond-
ing support (in sl(N)[u]!) is isomorphic to the support of a certain classical twist in
sl(N+1), which is however constant! This observation enables us to apply results of [15],
[19], where constant twists from the Belavin–Drinfeld list were quantized. Of course,
the corresponding quantum twists, one in Uq(sl(N)[u]) and the second in Uq(sl(N+1)),
have isomorphic quantum supports. We will call this method affinization by Hopf iso-
morphism.

B). Affinization by automorphism. Let F be some constant twist of Uq(g) and ω
be some automorphism of Uq(g[u]) such that ω(Uq(g)) * Uq(g). Then, under some
conditions the element Fπ(ω) := (ω−1π(ω) ⊗ id)F will be also a quantum twist, i.e.
it satisfies the cocycle equation (5.1). Here π : Uq(g[u]) → Uq(g) is the canonical
projection (the images of the affine roots are zero). The method is interesting on its
own but what is more important is that it leads to quantization of rational solutions of
the CYBE.

We consider these two methods on examples for the quantum algebra Uq(glN [u]).

6 A quantum seaweed algebra and its affine realiza-

tion

As we already mentioned it is more convenient to use instead of the simple Lie algebra
slN its central extension glN . The polynomial affine Lie algebra glN [u] is generated by
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Cartan–Weyl basis e
(n)
ij := eiju

n (i, j = 1, 2, . . .N , n = 0, 1, 2, . . .) with the defining
relations

[e
(n)
ij , e

(m)
kl ] = δjke

(n+m)
il − δile

(n+m)
kj . (6.1)

The total root system Σ of the Lie algebra glN [u] with respect to an extended Cartan
subalgebra generated by the Cartan elements eii (i = 1, 2, . . . , N) and d = u(∂/∂u) is
given by

Σ(glN [u]) = {ǫi − ǫj , nδ + ǫi − ǫj , nδ | i 6= j; i, j = 1, 2, . . . , N ; n = 1, 2, . . .} , (6.2)

where ǫi (i = 1, 2, . . . , N) is the orthonormal basis of a N -dimensional Euclidean space
RN dual to the Cartan subalgebra of glN .

We have the following correspondence: e
(n)
ij = enδ+ǫi−ǫj

for i 6= j, n = 0, 1, 2, . . .. We
choose the following system of positive simple roots:

Π(glN [u]) = {αi := ǫi − ǫi+1, α0 := δ + ǫN − ǫ1 | i = 1, 2, . . . N − 1} . (6.3)

Now we would like to introduce seaweed algebra, which is important for our purposes.
Let swN+1 be a subalgebra of glN+1 generated by the root vectors: e21, ei,i+1, ei+1,i

for i = 2, 3, . . . , N and eN,N+1, and also by the Cartan elements: e11 + eN+1N+1, eii

for i = 2, 3, . . . , N . It is easy to check that swN+1 has the structure of a seaweed Lie
algebra (see [7]).

Let ŝwN be a subalgebra of glN [u] generated by the root vectors: e
(0)
21 , e

(0)
i,i+1, e

(0)
i+1,i for

i = 2, 3, . . . , N and e
(1)
N,1, and also by the Cartan elements: e

(0)
ii for i = 1, 2, 3, . . . , N . It is

easy to check that the Lie algebras ŝwN and swN+1 are isomorphic. This isomorphism

is described by the following correspondence: ei+1,i ↔ e
(0)
i+1,i for i = 1, 2, . . . , N − 1,

ei,i+1 ↔ e
(0)
i,i+1 for i = 2, 3, . . . , N − 1, eN,N+1 ↔ e

(1)
N,1 for i = 2, 3, . . . , N − 1, and

(e11 + eN+1,N+1) ↔ e
(0)
11 , eii ↔ e

(0)
ii for i = 2, 3, . . . , N . We shall call ŝwN an affine

realization of swN+1.
Now let us consider the q-analogs of the previous Lie algebras. The quantum algebra

Uq(glN) is generated by the Chevalley elements1 ei,i+1, ei+1,i (i = 1, 2, . . . , N − 1), q±eii

(i = 1, 2, . . . , N) with the defining relations:

qeiiq−eii = q−eiiqeii = 1 ,

qeiiqejj = qejjqeii ,

qeiiejkq
−eii = qδij−δikejk (|j − k| = 1) ,

[ei,i+1, ej+1,j] = δij
q

eii−ei+1,i+1 − q
ei+1,i+1−eii

q− q−1 ,

[ei,i+1, ej,j+1] = 0 for |i− j| ≥ 2 ,

[ei+1,i, ej+1,j] = 0 for |i− j| ≥ 2 ,

[[ei,i+1, ej,j+1]q, ej,j+1]q = 0 for |i− j| = 1 ,

[[ei+1,i, ej+1,j]q, ej+1,j]q = 0 for |i− j| = 1 .

(6.4)

1We denote the generators in the classical and quantum cases by the same letter ”e”. It should not
cause any misunderstanding.
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where [eβ , eγ ]q denotes the q-commutator:

[eβ, eγ]q := eβeγ − q(β,γ)eγeβ . (6.5)

The Hopf structure on Uq(glN ) is given by the following formulas for a comultiplication
∆q, an antipode Sq, and a co-unit εq:

∆q(q
±eii) = q±eii ⊗ q±eii ,

∆q(ei,i+1 = ei,i+1 ⊗ 1 + qei+1,i+1−eii ⊗ ei,i+1 ,

∆q(ei+1,i) = ei+1,i ⊗ qeii−ei+1,i+1 + 1 ⊗ ei+1,i ;

(6.6)

Sq(q
±eii) = q∓eii ,

Sq(ei,i+1) = −qeii−ei+1,i+1 ei,i+1 ,

Sq(ei+1,i) = −ei+1,i q
ei+1,i+1−ei,i ;

(6.7)

εq(q
±eii) = 1 , εq(eij) = 0 for |i− j| = 1 . (6.8)

In order to construct composite root vectors eij for |i − j| ≥ 2 we fix the following
normal ordering of the positive root system ∆+ (see [36, 24, 25])

ǫ1− ǫ2 ≺ ǫ1− ǫ3 ≺ ǫ2− ǫ3 ≺ ǫ1− ǫ4 ≺ ǫ2 − ǫ4 ≺ ǫ3− ǫ4 ≺ . . . ≺

ǫ1− ǫk≺ ǫ2− ǫk≺ . . . ≺ ǫk−1− ǫk≺ . . . ≺ ǫ1− ǫN ≺ ǫ2− ǫN ≺ . . . ≺ ǫN−1− ǫN .
(6.9)

According to this ordering we set

eij := [eik, ekj]q−1 , eji := [ejk, eki]q , (6.10)

where 1 ≤ i < k < j ≤ N . It should be stressed that the structure of the composite root
vectors does not dependent on the choice of the index k in the r.h.s. of the definition
(6.10). In particular, we have

eij := [ei,i+1, ei+1,j ]q−1 = [ei,j−1, ej−1,j]q−1 ,

eji := [ ej,i+1, ei+1,i ]q = [ej,j−1, ej−1,i]q ,
(6.11)

where 2 ≤ i+ 1 < j ≤ N .
Using these explicit constructions and the defining relations (6.4) for the Cheval-

ley basis it is not hard to calculate the following relations between the Cartan–Weyl
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generators eij (i, j = 1, 2, . . . , N):

qe
kkeijq

−e
kk = qδ

ki
−δ

kjeij (1 ≤ i, j, k ≤ N) , (6.12)

[eij , eji] =
qeii−ejj − qejj−eii

q − q−1
(1 ≤ i < j ≤ N) , (6.13)

[eij , ekl]q−1 = δjkeil (1 ≤ i < j ≤ k < l ≤ N) , (6.14)

[eik, ejl]q−1 = (q − q−1) ejkeil (1 ≤ i < j < k < l ≤ N) , (6.15)

[ejk, eil]q−1 = 0 (1 ≤ i ≤ j < k ≤ l ≤ N) , (6.16)

[ekl, eji] = 0 (1 ≤ i < j ≤ k < l ≤ N) , (6.17)

[eil, ekj] = 0 (1 ≤ i < j < k < l ≤ N) , (6.18)

[eji, eil] = ejl q
eii−ejj (1 ≤ i < j < l ≤ N) , (6.19)

[ekl, eli] = eki q
ekk−e

ll (1 ≤ i < k < l ≤ N) , (6.20)

[ejl, eki] = (q−1 − q) ekleji q
ejj−ekk (1 ≤ i < j < k < l ≤ N) . (6.21)

These formulas can also be obtained from the relations between the elements of the
Cartan–Weyl basis for the quantum superalgebra Uq(gl(N |M) (see [39]). If we apply
the Cartan involution (e∗ij = eji) to the formulas above, we will get all relations between
elements of the Cartan–Weyl basis.

The quantum algebra Uq(glN [u]) (N ≥ 3) is generated (as a unital associative alge-

bra) by the algebra Uq(glN) and the additional element e
(1)
N1 with the relations:

q±e
(0)
ii e

(1)
N1 = q∓(δi1−δiN )e

(1)
N1q

±e
(0)
ii ,

[e
(0)
i,i+1, e

(1)
N1] = 0 for i = 2, 3, . . . , N − 2 ,

[e
(0)
i+1,i, e

(1)
N1] = 0 for i = 1, 2, . . . , N − 1 ,

[e
(0)
12 , [e

(0)
12 , e

(1)
N1]q]q = 0 ,

[e
(0)
N−1,N , [e

(0)
N−1,N , e

(1)
N1]q]q = 0 ,

[[e
(0)
12 , e

(1)
N1]q, e

(1)
N1]q = 0 ,

[[e
(0)
N−1,N , e

(1)
N1]q, e

(1)
N1]q = 0 .

(6.22)

The Hopf structure of Uq(glN [u]) is defined by the formulas (6.6)-(6.8) for Uq(gl
(0)
N ) and

the following formulas for the comultiplication and the antipode of e
(1)
N1:

∆q(e
(1)
N1) = e

(1)
N1 ⊗ 1 + qe

(0)
11 −e

(0)
NN ⊗ e

(1)
N1 , (6.23)

Sq(e
(1)
N1) = −qe

(0)
NN

−e
(0)
11 e

(1)
N1 . (6.24)

23



Quantum analogs of the seaweed algebra swN+1 and its affine realization ŝwN are
inherited from the quantum algebras Uq(glN+1) and Uq(glN [u]). Namely, the quantum
algebra Uq(swN+1) is generated by the root vectors: e21, ei,i+1, ei+1,i for i = 2, 3, . . . , N

and eN,N+1, and also by the q-Cartan elements: qe11+e
N+1,N+1 , qeii for i = 2, 3, . . . , N with

the relations satisfying (6.4). Similarly, the quantum algebra Uq(ŝwN) is generated by

the root vectors: e
(0)
21 , e

(0)
i,i+1, e

(0)
i+1,i for i = 2, 3, . . . , N and e

(1)
N,1, and also by the q-Cartan

elements: qe
(0)
ii for i = 1, 2, 3, . . . , N with the relations satisfying (6.4) and (6.22). It is

clear that the algebras Uq(glN+1) and Uq(ŝwN) are isomorphic as associative algebras
but they are not isomorphic as Hopf algebras. However if we introduce a new coproduct
in the Hopf algebra Uq(glN+1)

∆
(F1,N+1)
q (x) = F1,N+1∆q(x)F

−1
1,N+1 (∀x ∈ Uq(glN+1)) , (6.25)

where
F1,N+1 := q−e11⊗e

N+1,N+1 , (6.26)

we obtain isomorphism of Hopf algebras

U (F1,N+1)
q (swN+1) ≃ Uq(ŝwN) . (6.27)

Here U
(F1,N+1)
q (swN+1) denotes the quantum seaweed algebra Uq(swN+1) with the twisted

coproduct (6.25).

7 Cartan part of Cremmer-Gervais r-matrix

First of all we recall classification of quasi-triangular r-matrices for a simple Lie algebra
g. The quasi-triangular r-matrices are solutions of the system

r12 + r21 = Ω ,

[r12, r13] + [r12, r23] + [r13, r23] = 0 ,
(7.1)

where Ω is the quadratic the Casimir two-tensor in g⊗ g. Belavin and Drinfeld proved
that any solution of this system is defined by a triple (Γ1,Γ2, τ), where Γ1,Γ2 are subdia-
grams of the Dynkin diagram of g and τ is an isometry between these two subdiagrams.
Further, each Γi defines a reductive subalgebra of g, and τ is extended to an isometry
(with respect to the corresponding restrictions of the Killing form) between the corre-
sponding reductive subalgebras of g. The following property of τ should be satisfied:
τk(α) 6∈ Γ1 for any α ∈ Γ1 and some k. Let Ω0 be the Cartan part of Ω. Then one can
construct a quasi-triangular r-matrix according to the following

Theorem 7.1 (Belavin–Drinfeld [1]). Let r0 ∈ h ⊗ h satisfies the systems

r12
0 + r21

0 = Ω0 , (7.2)

(α⊗ 1 + 1 ⊗ α)(r0) = hα (7.3)

(τ(α) ⊗ 1 + 1 ⊗ α)(r0) = 0 (7.4)
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for any α ∈ Γ1. Then the tensor

r = r0 +
∑

α>0

e−α ⊗ eα +
∑

α>0;k≥1

e−α ∧ eτk(α) (7.5)

satisfies (7.1). Moreover, any solution of the system (7.1) is of the above form, for a
suitable triangular decomposition of g and suitable choice of a basis {eα}.

In what follows, aiming the quantization of algebra structures on the polynomial Lie
algebra glN [u]) we shall use the twisted two-tensor qr0(N) where r0(N) is the Cartan part
of the Cremmer–Gervais r-matrix for the Lie algebra glN when Γ1 = {α1, α2, . . . , αN−2}
Γ2 = {α2, α3, . . . , αN−1} and τ(αi) = αi+1. An explicit form of r0(N) is defined by the
following proposition (see [16]).

Proposition 7.2. The Cartan part of the Cremmer–Gervais r-matrix for glN is given
by the following expression

r0(glN) =
1

2

N∑

i=1

eii ⊗ eii +
∑

1≤i<j≤N

N + 2(i− j)

2N
eii ∧ ejj . (7.6)

It is easy to check that the Cartan part (7.6), r0(N) := r0(glN), satisfies the condi-
tions

(
ǫk ⊗ id + id ⊗ ǫk

)(
r0(N)

)
= ekk for k = 1, 2, . . . , N, (7.7)

(
ǫk ⊗ id + id ⊗ ǫk′

)(
r0(N)

)
= (k − k′) C1(N) −

k−1∑

i=k′+1

eii for 1 ≤ k′ < k ≤ N,(7.8)

where C1(N) is the normalized central element (the Casimir element of first order):

C1(N) :=
1

N

N∑

i=1

eii . (7.9)

In particular (7.7) and (7.8) imply the Belavin–Drinfeld conditions (7.3) and (7.4), i.e.

(
αk ⊗ id + id ⊗ αk

)(
r0(N)

)
= hαk

:= ekk − ek+1,k+1 , (7.10)
(
τ(αk′) ⊗ id + id ⊗ αk′

)(
r0(N)

)
=

(
αk′+1 ⊗ id + id ⊗ αk′

)(
r0(N)

)
= 0 (7.11)

for k = 1, 2 . . . , N − 1 , k′ = 1, 2 . . . , N − 2 , where αk = ǫk − ǫk+1 and αk′ = ǫk′ − ǫk′+1

are the simple roots of system Π(glN) (see (6.3)).
Now we consider some properties of the two-tensor qr0(N). First of all it is obvious

that this two-tensor satisfies cocycle equation. Further, for construction of a quantum
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twist corresponding to the Cremmer–Gervais r-matrix (7.6) we introduce new Cartan–
Weyl basis elements e ′ij (i 6= j) for the quantum algebra Uq(glN ) as follows

e ′ij = eijq

(
(ǫi−ǫj)⊗id

)(
r0(N)

)
= eij q

j−1
P

k=i

e
kk

−(j−i)C1(N)
, (7.12)

e ′ji = q

(
id⊗(ǫj−ǫi)

)(
r0(N)

)
eji = q

j
P

k=i+1
e
kk

−(j−i)C1(N)

eji , (7.13)

for 1 ≤ i < j ≤ N . Permutation relations for these elements can be easily obtained
from the relations (6.12)–(6.21). For example, we have

[e′ij , e
′
ji] = [eij , eji] q

(
(ǫi−ǫj)⊗id+id⊗(ǫj−ǫi)

)(
r0(N)

)

=
q

2
j−1
P

k=i

e
kk

−2(j−i)C1(N)
− q

2
j

P

k=i+1
e
kk

−2(j−i)C1(N)

q − q−1
.

(7.14)

It is not hard to check that the Chevalley elements e′i,i+1 and e′i+1,i have the following

coproducts after twisting by the two-tensor qr0(N):

q r0(N)∆q(e
′
i,i+1)q

−r0(N) = e′i,i+1 ⊗ q 2
(
(ǫi−ǫi+1)⊗id

)
(r0(N)) + 1 ⊗ e′i,i+1

= e′i,i+1 ⊗ q 2eii−2C1(N) + 1 ⊗ e′i,i+1 ,
(7.15)

q r0(N)∆q(e
′
i+1,i)q

−r0(N) = e′i+1,i ⊗ 1 + q−2
(
id⊗(ǫi+1−ǫi)

)
(r0(N)) ⊗ e′i+1,i

= e′i+1,i ⊗ 1 + q2ei+1,i+1−2C1(N) ⊗ e′i+1,i .
(7.16)

for 1 ≤ i < N . Since the quantum algebra Uq(glN) is a subalgebra of the quantum

affine algebra Uq(glN [u]) let us introduce the new affine root vector e
′(1)
N1 in accordance

with (7.12):

e
′(1)
N1 = eN1q

(
(ǫ

N
−ǫ1)⊗id

)(
r0(N)

)
= eN1 q

eNN−C1(N) . (7.17)

The coproduct of this element after twisting by the two-tensor qr0(N) has the form

q r0(N)∆q(e
′(1)
N1 )q−r0(N) = e

′(1)
N1 ⊗ q 2

(
(ǫ1−ǫ

N
)⊗id

)
(r0(N)) + 1 ⊗ e

′(1)
N1

= e
′(1)
N1 ⊗ q 2e

NN
−2C1(N) + 1 ⊗ e

′(1)
N1 .

(7.18)

Consider the quantum seaweed algebra Uq(swN+1) after twisting by the two-tensor

qr0(N+1). Its new Cartan–Weyl basis and the coproduct for the Chevalley generators
are given by formulas (7.12), (7.13) and (7.15), (7.16), where N should be replaced by
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N + 1 and where i 6= 1 in (7.12) and (7.15), and j 6= N in (7.13), and i 6= N in (7.16).
In particular, for the element e′N,N+1 we have

e′N,N+1 = eN,N+1 q
e
NN

−C1(N+1) . (7.19)

q r0(N+1)∆q(e
′
N,N+1)q

−r0(N+1) = e′N,N+1 ⊗ q 2e
NN

−2C1(N+1) + 1 ⊗ e′N,N+1 . (7.20)

Comparing the Hopf structures of the quantum seaweed algebra Uq(swN+1) after twist-

ing by the two-tensor qr0(N+1)and its affine realization Uq(ŝwN) after twisting by the

two-tensor qr0(N) we see that these algebras are isomorphic as Hopf algebras:

q r0(N+1)∆q(Uq(swN+1))q
−r0(N+1) ≃ q r0(N)∆q(Uq(ŝwN))q−r0(N) . (7.21)

In terms of new Cartan–Weyl bases this isomorphism, ”ı”, is arranged as follows

ı(e ′ij) = e
′(0)
ij for 2 ≤ i < j ≤ N , (7.22)

ı(e ′ji) = e
′(0)
ji for 1 ≤ i < j ≤ N − 1 , (7.23)

ı(eii − C1(N + 1)) = e
(0)
ii − C1(N) , for 2 ≤ i ≤ N , (7.24)

ı(e ′iN+1) = e
′(1)
i1 = e

(1)
i1 q

(
(ǫi−ǫ1)⊗id

)(
r0(N)

)
= e

(1)
i1 q

N
P

k=i

e
kk

−(N+1−i)C1(N)
(7.25)

for 2 ≤ i ≤ N , where the affine root vectors e
(1)
i1 (2 ≤ i < N) are defined by the formula

(cf. 6.10):

e
(1)
i1 = [e

(0)
iN , e

(1)
N1]q−1 . (7.26)

8 Affine realization of Cremmer-Gervais twist

In order to construct a twist corresponding to the Cremmer-Gervais r-matrix (7.6) we
will follow the papers [15],[19].

Let R be a universal R-matrix of the quantum algebra Uq(glN+1). According to [24]
it has the following form

R = R ·K (8.1)

where the factor K is a q-power of Cartan elements (see [24]) and we do not need its
explicit form. The factor R depends on the root vectors and it is given by the following
formula

R = R12(R13R23)(R14R24R34) · · · (R1,N+1R2,N+1 · · ·RN,N+1)

= ↑
N+1∏

j=2

(
↑

j−1∏

i=1

Rij

)
,

(8.2)

where
Rij = expq−2((q − q−1)eij ⊗ eji) , (8.3)
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expq(x) :=
∑

n≥0

xn

(n)q!
, (n)q! ≡ (1)q(2)q . . . (n)q , (k)q ≡ (1 − qk)/(1 − q) . (8.4)

It should be noted that the product of factors Rij in (8.2) corresponds to the normal
ordering (6.9) where N is replaced by N + 1.

Let R ′ := qr0(N+1)Rq−r0(N+1). It is evident that

R ′ = ↑
N+1∏

j=2

(
↑

j−1∏

i=1

R ′
ij

)
, (8.5)

where
R ′

ij = expq−2((q − q−1)e ′ij ⊗ e ′ji) . (8.6)

Here e ′ij and e ′ji are the root vectors (7.12) and (7.13) where N should be replaced by
N + 1.

Let T be a homomorphism which acts on the elements e ′ij (1 ≤ i < j ≤ N + 1)
by formulas T (e ′ij) = e ′τ(ij) = e ′i+1,j+1 for 1 ≤ i < j ≤ N , and T (e ′i,N+1) = 0 for all
i = 1, 2, . . . , N . We set

R ′(k) := (T k ⊗ id)(R ′) = ↑
N+1−k∏

j=2

(
↑

j−1∏

i=1

R
′(k)
ij

)
, (8.7)

where

R
′(k)
ij = expq−2

(
(q − q−1)T k(e ′ij) ⊗ e ′ji

)
= expq−2

(
(q − q−1)e ′i+k,j+k ⊗ e ′ji

)
(8.8)

for k ≤ N − j.
According to [15], [19], the Cremmer-Gervais twist FCG in Uq(glN+1) is given as

follows
FCG = F · qr0(N+1) , (8.9)

where
F = R ′(N−1)R ′(N−2) · · ·R ′(1) . (8.10)

It is easy to see that the support of the twist (8.10) is the quantum seaweed algebra
Uq(swN+1) with the coproducts (7.15) and (7.16) where N should be replaced by N+1.
From the results of the previous section it follows that we can immediately obtain an
affine realization F̂CG which twists the quantum affine algebra Uq(glN [u]):

F̂CG = F̂ · qr0(N) , (8.11)

F̂ := (ı⊗ ı)(F ) = R̂ ′(N−1)R̂ ′(N−2) · · · R̂ ′(1) (8.12)

R̂ ′(k) = ↑
N+1−k∏

j=2

(
↑

j−1∏

i=1

R̂
′(k)
ij

)
. (8.13)
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where

R̂
′(k)
ij = expq−2

(
(q − q−1)e

′(0)
i+k,j+k ⊗ e

′(0)
ji

)
for 1 ≤ i < j ≤ N − k ,(8.14)

R̂
′(k)
i,N+1−k = expq−2

(
(q − q−1)e

′(1)
N,i+k ⊗ e

′(0)
N+1−k,i

)
for 1 ≤ i < N + 1 − k .(8.15)

Finally, using the isomorphism (6.27) from Section 6 we obtain the following two results:

Theorem 8.1. Let F̂ ′
CG be the twist F̂CG reduced to Uq(ŝlN), and let R̂ be the uni-

versal R-matrix for Uq(ŝlN). Then the R-matrix F̂ ′
21

CGR̂F̂ ′
−1

CG quantizes the quasi-
trigonometric solution (4.30).

Now we turn to quantization of the quasi-trigonometric solution given by (4.29).
The isomorphism (6.27) shows that classical limits swN+1 and ŝwN are isomorphic as
Lie bialgebras. Computations show that the support of solution (4.29) is contained in
the support of the solution (4.30). So, we can push the twist related to the solution
(4.29) to sl(N + 1). It is not difficult to see that such an obtained twist will be defined
by the following Belavin-Drinfeld triple for sl(N + 1): {α2, ..., αN−1} → {α3, ..., αN}.
In fact, this is exactly the Cremmer-Gervais twist for sl(N), embedded into sl(N + 1)
as the N ×N block in the right low corner.

The corresponding constant twist for the above Belavin-Drinfeld triple can be quan-
tized by means of [15]. Using once again (6.27), we get a quantum twist which we denote
by F̂ s

CG.

Theorem 8.2. Let R̂′ be the universal R-matrix for Uq(ŝlN). Then the R-matrix

F̂ s21
CG R̂′(F̂ s

CG)−1 quantizes the quasi-trigonometric solution (4.29).

Remark 8.3. In fact, using the isomorphism (6.27) we can quantize all the quasi-
trigonometric solutions of the CYBE corresponding to the first simple root α1 of sl(N).

Let W be the Lagrangian subalgebra of sl(N)((u−1)) ⊕ sl(N) contained in Oα1 ⊕
sl(N). Then it is not difficult to show that the support of the corresponding classical
twist is contained in Oα1 ∩ sl(N)[u], which is isomorphic to ŝwN . Therefore, it provides
a classical twist in swN+1 since ŝwN and swN+1 are isomorphic as Lie bialgebras.

Now we can again use results of [15], [19] to get the corresponding quantum affine
twist.

9 Affinization by automorphism and quantization

of rational r-matrices

The aim of this section is to quantize certain rational r-matrices. We begin with the
following result:
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Theorem 9.1. Let π : Uq(g[u]) −→ Uq(g) be the canonical projection sending all the
affine generators to zero. Let F ∈ Uq(g)⊗Uq(g) be a twist. Let us consider the following
element

Fπω = (ω−1π(ω) ⊗ 1)F (π ⊗ id)(∆(ω−1))∆(ω)

and represent it as a product F ′F . Then Fπω is a twist iff

F12(π ⊗ id ⊗ id)(∆ ⊗ id)(F ′) = F ′
23F12, (9.1)

for some invertible ω ∈ Uq(g[u]).

Proof. We will check the cocycle equation for an equivalent element

F
′

πω := (ω ⊗ ω)Fπω∆(ω−1) = (π ⊗ id)
{
(ω ⊗ ω)F∆(ω−1)

}
.

Note that F
′

πω ∈ Uq(g) ⊗ Uq(g[u]). It follows that

Assoc(F ′
πω) := (F ′

πω)12(∆ ⊗ id)(F ′
πω)(id ⊗ ∆)((F ′

πω)−1)(F ′
πω)−1

23 ∈ Uq(g) ⊗ U⊗2
q (g[u]).

On the other hand

Assoc(F ′
πω) = (π ⊗ id ⊗ id)

{
ω⊗3Assoc(Fπω)(ω−1)⊗3

}
.

If we take into account (π ⊗ id)(F ′) = 1 ⊗ 1 and the property (9.1), then we get

Assoc(F ′
πω) =

= Ad(π(ω) ⊗ ω⊗2)
(
F12F

′
23(∆ ⊗ id)(F )(id ⊗ ∆)(F−1)(F23)

−1(F ′
23)

−1
)

= Ad(π(ω) ⊗ ω⊗2)
(
F

′

23Assoc(F )(F
′

23)
−1

)
.

(9.2)

Since F is a twist we deduce that Assoc(F ′
πω) = 1 ⊗ 1 ⊗ 1.

Conversely, let F ∈ Uq(g[u])⊗Uq(g) and (π⊗ id)(F ) is a twist, then there exist at least
one ω ∈ Uq(g[u]) with the required property (9.1). Indeed, note that (S ⊗ S)(F−1

21 ) is a
twist quantizing the same rational/quasi-trigonometric r−matrix and thus there exists
an invertible element ω such that

(S ⊗ S)(F−1
21 ) = (ω ⊗ ω)F∆(ω−1) ∈ Uq(g) ⊗ Uq(g[u]).

By taking projection (π ⊗ id) we obtain

F = (ω−1π(ω) ⊗ 1)(π ⊗ id)(F )(π ⊗ id)(∆(ω−1))∆(ω).

The property (9.1) is necessary for the cocycle equation to hold.

If an element ω satisfies the conditions of Theorem 9.1 we will call it affinizator as it
allows to construct an affine extension for a non-affine twist F . Such element of course
is not unique but some affinizators allow to construct Fπω which are compatible with
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the Yangian degeneration.
Consider as an example the affinization of the coboundary twist

F = (expq2(λ e−α) ⊗ expq2(λ e−α))∆(expq−2(−λ e−α))

with ω = expq2(µ q−hαeδ−α). In this case we obtain

Fπω = (1 ⊗ 1 + (q2 − 1)λ q−hαeδ−α ⊗ q−hα + (q2 − 1)µ e−α ⊗ 1)
(− 1

2
1⊗hα)

q2 .

Let us form the equation for which the different ω are the solutions. In order to find
such ω, we consider the following equation

µ(id ⊗ S)(Fπω) =
∑

i,j

ω−1π(ω)F
(1)
i π(ω

(1)
j )S(ω

(2)
j )S(F 2

i ),

where F =
∑

i F
(1)
i ⊗ F

(2)
i and ∆(ω) =

∑
i ω

(1)
i ⊗ ω

(2)
i .

Now we would like to explain how ω-affinization can be used to find a Yangian
degeneration of the affine Cremmer–Gervais twists. Let us consider the case sl3. We
set

F = F
(τ)
CG3

:= expq2(−(q − q−1)ζ ê
(0)
12 ⊗ ê

(0)
32 ) · K̂3 , (9.3)

where
K̂3 = q

4
9
h12⊗h12+ 2

9
h12⊗h23+

5
9
h23⊗h12+ 7

9
h23⊗h23 (9.4)

with hij := eii − ejj. The twist (9.3) belongs to Uq(sl3) ⊗ Uq(sl3)[[ζ ]].

The following affinizator ωlong
3 was constructed in [31]. It is given by the following

formula

ωlong
3 = expq2(

ζ

1 − q2
q2h⊥

α ê
(1)
21 ) expq2(−

qζ2

(1 − q2)2
q2h⊥

β ê
(1)
31 )

× expq−2(
ζ2

1 − q2
ê
(0)
32 ) expq−2(

ζ

1 − q2
ê
(0)
21 ) expq−2(

ζ2

1 − q2
ê
(0)
32 ) ,

(9.5)

where h⊥α = 1
3
(e11 + e22) −

2
3
e33 and h⊥α = 2

3
e11 −

1
3
(e22 + e33).

For convenience sake we remind the reader that

ê
(0)
12 = e012q

h⊥

β
−h⊥

α ê
(0)
21 = qh⊥

β e
(0)
21

ê
(0)
32 = q−h⊥

β e
(0)
32 , ê031 = e032e

(0)
21 − q−1e

(0)
21 e

(0)
32

ê
(1)
31 = qh⊥

α−h⊥

β e
(1)
31 , ê

(1)
32 = e

(0)
12 e

(1)
31 − qe

(1)
31 e

(0)
12

(9.6)

Theorem 9.2. The elements ωlong
3 , F = F

(τ)
CG3

satisfy the conditions of Theorem 9.1
and consequently Fπω is a twist.

Proof. Straigtforward.
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It turns out that F ′
πω has a rational degeneration. To define this rational degenera-

tion we have to introduce the so-called f -generators:

f0 = (q − q−1) ê
(0)
31 , f1 = q2h⊥

β ê
(1)
31 + q−1ζ ê

(0)
31 ,

f2 = (1 − q−2) ê
(0)
32 , f3 = qh⊥

α ê
(1)
32 − ζ ê

(0)
32 .

(9.7)

Let us consider the Hopf subalgebra of U K̂3
q (ŝl3) generated by

{h12, h23, f0, f1, f2, f3, ê
(0)
12 , ê

(0)
21 }.

When q → 1 we obtain the following Yangian twist (see [31]):

F
′

πω = (1 ⊗ 1 − ζ 1 ⊗ f 3 − ζ2 h⊥β ⊗ f 2)
(−h⊥

β
⊗1)(1 ⊗ 1 + ζ 1 ⊗ e

(0)
21 )(−h⊥

β
⊗1)

× exp(ζ2 e
(0)
12 h13 ⊗ f 0) exp(−ζ e

(0)
12 ⊗ f 1) · exp(−ζ e

(0)
12 ⊗ f 2)

× (1 ⊗ 1 − ζ 1 ⊗ f3 − ζ2 h⊥α ⊗ f 2)
((h⊥

β
−h⊥

α )⊗1) ,

(9.8)

where the overlined generators are the generators of Y (sl3). In the evaluation represen-
tation we have:

f0 7→ e31 , f 1 7→ u e31

f2 7→ e32 , f3 7→ u e32

e21 7→ e21 , e12 7→ e12 .

(9.9)

Therefore we have obtained the following result:

Theorem 9.3. The Yangian twist F
′

πω quantizes the following classical rational r−matrix

r(u, v) =
Ω

u− v
+ h⊥α ⊗ ve32 − ue32 ⊗ h⊥α + h⊥β ∧ e21

+e21 ⊗ ve31 − ue31 ⊗ e21 + e12 ∧ e32 .
(9.10)

To obtain a quantization of the second non-constant rational r-matrix for sl3 we
take the following affinizator ω short

3 and apply it to F = qr0(3), where the Cartan part
of the Cremmer-Gervais constant r-matrix for sl3 has the form:

r0(3) =
2

3

(
hα1 ⊗ hα1 + hα2 ⊗ hα2

)
+

1

3

(
hα1 ⊗ hα2 + hα2 ⊗ hα1

)
+

1

6
hα1 ∧ hα2 . (9.11)

We have

ωshort
3 = expq−2

(
ζ ê

(0)
21

)
expq2

(
−

ζ

1 − q2
q2h⊥

α ê
(1)
31

)
expq−2

( ζ

1 − q2
ê
(0)
32

)
, (9.12)

where

ê
(0)
21 = q−

1
3
(h12−h23)e

(0)
21 , ê

(0)
32 = q−h⊥

α e
(0)
32 , ê

(1)
31 = q−h⊥

α e
(1)
31 .
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We have to calculate

Affω short
3

(qr0(3)) := (π ⊗ id) ◦
(
(ωshort

3 ⊗ ωshort
3 )qr0(3)∆(ω short

3 )−1
)
. (9.13)

Using standard commutation relations between q-exponents, F ′
πω can be brought to

the following form:

(
1 ⊗ 1 + ζ 1 ⊗ q2h⊥

α ê
(1)
31 + ζ q−2h⊥

α⊗
(
Ad expq2(ζê

(0)
21 )

)
(ê

(0)
32 )

)(−h⊥
α1

⊗1)

q2

×
(
1 ⊗ 1 + ζ(1 − q2) 1 ⊗ ê

(0)
21

)(− 1
3
(h12−h23)⊗1)

q−2
qr0(3) .

(9.14)

The q-Hadamard formula allows us to calculate the Ad-term explicitly:

(
Ad expq−2(ζ ê

(0)
21 )

)
(ê

(0)
21 ) = ê

(0)
21 + ζ q−h⊥

β e
(0)
31 , (9.15)

where e
(0)
31 := e

(0)
21 e

(0)
32 − q e

(0)
32 e

(0)
21 . To define a rational degeneration we introduce g-

generators, which satisfy the Yangian relations as q → 1:

g0 = (q − q−1)q−h⊥

β e
(0)
31 , g1 = q2h⊥

α ê
(1)
31 + ζ q−h⊥

β e
(0)
31 , g2 = (q2 − 1) ê

(0)
21 .

Using g-generators we can calculate the rational degeneration of the twist F ′
πω:

F
′

πω =
(
1 ⊗ 1 + ζ 1 ⊗ (g1 + e

(0)
32 ) − ζ2 h⊥α ⊗ g0

)(−h⊥
α⊗1)

×
(
1 ⊗ 1 − ζ 1 ⊗ g2

)(− 1
3
(h12−h23)⊗1)

.

(9.16)

Theorem 9.4. This Yangian twist F
′

πω quantizes the following rational r-matrix:

r(u, v) =
Ω

u− v
− u e31 ⊗ h⊥α + v h⊥α ⊗ e31 + h⊥α ∧ e32 −

1

3
(h12 − h23) ∧ e21 . (9.17)

Therefore we have quantized all non-trivial rational r-matrices for sl3 classified in
[33].

10 Solutions for sl(2) and deformed Hamiltonians

We consider the case sl(2). Let σ+ = e12, σ
− = e21 and σz = e11 − e22. Recall that in

sl(2) we have two quasi-trigonometric solutions, modulo gauge equivalence. The non-
trivial solution is X1(z1, z2) = X0(z1, z2) + (z1 − z2)(σ

+ ⊗ σ+). This solution is gauge
equivalent to the following:

Xa,b(z1, z2) =
z2Ω

z1 − z2
+ σ− ⊗ σ+ +

1

4
σz ⊗ σz (10.1)

+a(z1σ
− ⊗ σz − z2σ

z ⊗ σ−) + b(σ− ⊗ σz − σz ⊗ σ−).
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The above quasi-trigonometric solution was quantized in [23]. Let π1/2(z) be the

two-dimensional vector representation of Uq(ŝl2). In this representation, the generator
e−α acts as a matrix unit e21, eδ−α as ze21 and hα as e11 − e22. The quantum R-matrix

of Uq(ŝl2) in the tensor product π1/2(z1) ⊗ π1/2(z2) is the following:

R0(z1, z2) = e11 ⊗ e11 + e22 ⊗ e22 +
z1 − z2

q−1z1 − qz2
(e11 ⊗ e22 + e22 ⊗ e11) (10.2)

+
q−1 − q

q−1z1 − qz2
(z2e12 ⊗ e21 + z1e21 ⊗ e12).

Proposition 10.1. The R-matrix given by

R := R0(z1, z2) +
z1 − z2

q−1z1 − qz2
((b+ az2)σ

z ⊗ σ− (10.3)

+(q−1az1 + qb)σ− ⊗ σz + (b+ az2)(q
−1az1 + qb)σ− ⊗ σ−)

is a quantization of the quasi-trigonometric solution Xa,b.

Corollary 10.2. The rational degeneration

RF (u1, u2) =
u1 − u2

u1 − u2 − η
(1 − η

P12

u1 − u2

− ξu2σ
z ⊗ σ− (10.4)

+ξ(u1 − η)σ− ⊗ σz + ξ2u2(u1 − η)σ− ⊗ σ−).

where P12 denotes the permutation of factors in C2 ⊗ C2, is a quantization of the fol-
lowing rational solution of the CYBE:

r(u1, u2) =
Ω

u1 − u2

+ ξ(u1σ
− ⊗ σz − u2σ

z ⊗ σ−). (10.5)

The Hamiltonians of the periodic chains related to the twisted R-matrix were com-
puted in [23]. We recall this result: We consider

t(z) = Tr0R0N (z, z2)R0N−1(z, z2)...R01(z, z2) (10.6)

a family of commuting transfer matrices for the corresponding homogeneous periodic
chain, [t(z′), t(z”)] = 0, where we treat z2 as a parameter of the theory and z = z1 as
a spectral parameter. Then the Hamiltonian

Ha,b,z2 = (q−1 − q)z
d

dz
t(z) |z=z2 t

−1(z2) (10.7)

can be computed by a standard procedure:

Ha,b,z2 = HXXZ +
∑

k

(C(σz
kσ

−
k+1 + σ−

k σ
z
k+1) +Dσ−

k σ
−
k+1. (10.8)
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Here C = ((q − 1)/2)(b − az2q
−1), D = (az2 + b)(q−1az2 + qb), σ+ = e12, σ

− = e21,
σz = e11 − e22 and

HXXZ =
∑

k

(σ+
k σ

−
k+1 + σ−

k σ
+
k+1 +

q + q−1

2
σz

kσ
z
k+1). (10.9)

We see that, by a suitable choice of parameters a, b and z2, we can add to the
XXZ Hamiltonian an arbitrary linear combination of the terms

∑
k σ

z
kσ

−
k+1 + σ−

k σ
z
k+1

and
∑

k σ
−
k σ

−
k+1 and the model will remain integrable.

Moreover, it was proved in [23] that the Hamiltonian

Hη,ξ,u2 = ((q−1 − q)u− q−1η)
d

du
t(u) |u=u2 t

−1(u2) (10.10)

for
t(u) = Tr0R0N (u, u2)R0N−1(u, u2)...R01(u, u2), (10.11)

is given by the same formula (10.7), where C = ξ((q−1 − 1)/2)u2 − (q−1ξη)/2 and
D = ξ2u2(q

−1u2 − qη). Now it also makes sense in the XXX limit q = 1:

Hη,ξ,u2 = HXXX +
∑

k

(C(σz
kσ

−
k+1 + σ−

k σ
z
k+1) +Dσ−

k σ
−
k+1), (10.12)

where C = −ξη/2 and D = ξ2u2(u2 − η).

11 Appendix

In this appendix we give the proofs of the following results mentioned in the text:

Proposition 11.1. Let X be a rational or quasi-trigonometric solution of (2.4). Then
X satisfies the unitarity condition (2.5).

Proof. The proof is almost a word to word transcription of the proof of [3], Prop. 4.1.
Interchanging u1 and u2 and also the first and second factors in g⊗3 in equation (2.4),
we obtain

[X21(u2, u1), X
23(u2, u3)] + [X21(u2, u1), X

13(u1, u3)]+ (11.1)

+[X23(u2, u3), X
13(u1, u3)] = 0.

Adding (11.1) and (2.4), we get

[X12(u1, u2) +X21(u2, u1), X
13(u1, u3) +X23(u2, u3)] = 0. (11.2)

a) Suppose X is rational, i.e. X(u, v) = Ω
u−v

+ p(u, v), where p is a polynomial. For
u1 and u2 fixed, let us multiply (11.2) by u2 − u3 and let u3 → u2. It follows that

[X12(u1, u2) +X21(u2, u1),Ω
23] = 0. (11.3)
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It is known that if a tensor r ∈ g ⊗ g satisfies [r ⊗ 1,Ω23] = 0, then r = 0. It follows
that X12(u1, u2) +X21(u2, u1) = 0.

b) Suppose X is quasi-trigonometric, i.e. X(u, v) = vΩ
u−v

+ q(u, v) where q is a
polynomial function. By the same procedure we get

[X12(u1, u2) +X21(u2, u1), u2Ω
23] = 0 (11.4)

which also implies the unitarity condition.

Proposition 11.2. Let W be a Lie subalgebra satisfying conditions 2) and 3) of Theo-
rem 3.8. Let r̃ be constructed as in (3.16). Assume r̃ induces a Lie bialgebra structure
on g[u] by δ

er(a(u)) = [r̃(u, v), a(u) ⊗ 1 + 1 ⊗ a(v)]. Then W ⊇ u−Ng[[u−1]] for some
positive N .

Proof. Since W is Lagrangian subalgebra, it is enough to prove that W is bounded.
Let us write

r̃(u, v) = X0(u, v) +
∑

m

Γm (11.5)

where Γm is the homogeneous polynomial of degree m with coefficients in g ⊗ g:

Γm =
∑

n+k=m

amnku
nvk. (11.6)

It is enough to prove that there exists a positive integer N such that Γm = 0 for m ≥ N .
We know that δ

er(a) should belong to g[u]⊗g[v] for any element a of g. On the other
hand, one can see that [Γm, a⊗ 1+1⊗ a] is either 0 or has degree m. This implies that
[Γm, a⊗ 1 + 1 ⊗ a] = 0 for m large enough. Therefore

Γm = Pm(u, v)Ω (11.7)

with Pm(u, v) ∈ C[[u, v]]. Let us compute the following:
[Γm, au⊗ 1 + 1 ⊗ av] = Pm(u, v)(u− v)[Ω, a⊗ 1] + Pm(u, v)v[Ω, a⊗ 1 + 1 ⊗ a]

= Pm(u, v)(u− v)[Ω, a⊗ 1].

We choose an element a such that [Ω, a⊗ 1] 6= 0. We obtain that if Pm(u, v) is not
identically zero then Pm(u, v)(u− v)[Ω, a ⊗ 1] is a homogeneous polynomial of degree
m+ 1. Consequently,

δ
er(au) =

∑

m

Pm(u, v)(u− v)[Ω, a⊗ 1] (11.8)

cannot belong to g[u] ⊗ g[v] unless Pm(u, v) = 0 for m large enough.
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Theorem 11.3. Let X(z1, z2) be a quasi-trigonometric solution of the CYBE.
1. Then there is a transformation Ψ(z), holomorphic around z = 1, such that

(
Ψ(z1)

−1 ⊗ Ψ(z2)
−1

)
X(z1, z2) = Y (

z1
z2

),

where Y (z) = Ω
z−1

+ s(z), with s(z) holomorphic around z = 1.

2. Y (eλ) is a trigonometric solution of the CYBE in the sense of Belavin–Drinfeld.

Proof. Let us consider X(z1, z2) = z2Ω
z1−z2

+p(z1, z2), where p(z1, z2) is a polynomial. Let

{Ii} be an orthonormal basis in g with respect to the Killing form and {ckij} denote the
structure constants of g with respect to {Ii}. Let us write

p(z1, z2) =
∑

i,j

pij(z1, z2)Ii ⊗ Ij .

We set
h(z) =

∑

i,j

pij(z, z)[Ii, Ij] =
∑

i,j,k

pij(z, z)ckijIk .

Repeating the arguments of [3], one can prove that h(z) and X(z1, z2) satisfy

z1
∂X(z1, z2)

∂z1
+ z2

∂X(z1, z2)

∂z2
= [h(z1) ⊗ 1 + 1 ⊗ h(z2), X(z1, z2)].

Suppose Ψ(z) is a function with values in Aut(g), which satisfies the differential equation

z
dΨ(z)

dz
= (adh(z))Ψ(z), (11.9)

and the initial condition Ψ(1) = Id. Then the function Y (z1, z2) defined as

Y (z1, z2) =
(
Ψ(z1)

−1 ⊗ Ψ(z2)
−1

)
X(z1, z2) ,

satisfies the CYBE and depends on z1/z2 only.
By construction, Ψ(z) is holomorphic in a neighborhood of z = 1 and clearly Y (z) =

Ω
z−1

+ s(z), where s(z) is a holomorphic function in the same neighborhood.
Now we turn to the proof of the second statement. Apply the change of variables

z1 = eu, z2 = ev. Then let us prove that Ψ(eu) is holomorphic in the entire complex
plane and Y (u, v) is a trigonometric solution of the CYBE.

Let Ψ1(u) := Ψ(eu). Clearly this operator satisfies the equation

dΨ1(u)

du
= (adh1(u))Ψ1(u), (11.10)

where h1(u) = h(eu).
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Let U(u) be the matrix of the operator Ψ1(u) in the basis {Ii}. Let aij(u, v) :=
pij(eu, ev) (the decomposition of h1(u) in the basis {Ii}). Equation (11.10) is equivalent
to

dU(u)

du
= H(u)U(u), (11.11)

where H(u) is the matrix with elements

hij(u) =
∑

s,r,t

cisjc
s
rta

rt(u, u). (11.12)

Since the matrix function H(u) is holomorphic in C, the matrix equation (11.11)
admits a unique solution satisfying U(0) = E. This solution is holomorphic in C
because U(u) = P exp(

∫ u

0
H(v)dv) (ordered exponential) and

‖U(u)‖ =

∥∥∥∥1 +

∫ u

0

H(v)dv +

∫ u

0

(

∫ v1

0

H(v1)H(v2)dv2)dv1 + ...

∥∥∥∥ ≤

≤ exp(

∫ u

0

‖H(v)‖dv.

Moreover, according to [3], the linear operator Ψ(u), corresponding to U(u), is an
automorphism of g.

Clearly Y (eu, ev) depends only on u−v and, as a function in one variable, has poles
when eu−v = 1. Hence it is trigonometric in the sense of Belavin–Drinfeld. This ends
the proof.
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