517 research outputs found

    Control of HSV-1 latency in human trigeminal ganglia—current overview

    Get PDF
    Although recurrent Herpes simplex virus type 1 (HSV-1) infections are quite common in humans, little is known about the exact molecular mechanisms involved in latency and reactivation of the virus from its stronghold, the trigeminal ganglion. After primary infection, HSV-1 establishes latency in sensory neurons, a state that lasts for the life of the host. Reactivation of the virus leads to recurrent disease, ranging from relatively harmless cold sores to ocular herpes. If herpes encephalitis—often a devastating disease—is also caused by reactivation or a new infection, is still a matter of debate. It is widely accepted that CD8+ T cells as well as host cellular factors play a crucial role in maintaining latency. At least in the animal model, IFNγ and Granzyme B secretion of T cells were shown to be important for control of viral latency. Furthermore, the virus itself expresses factors that regulate its own latency-reactivation cycle. In this regard, the latency associated transcript, immediate-early proteins, and viral miRNAs seem to be the key players that control latency and reactivation on the viral side. This review focuses on HSV-1 latency in humans in the light of mechanisms learned from animal model

    Fingolimod for Multiple Sclerosis: Mechanism of Action, Clinical Outcomes, and Future Directions

    Get PDF
    The oral sphingosine 1-phosphate receptor (S1PR) modulator fingolimod functionally antagonizes S1PR hereby blocking lymphocyte egress from secondary lymphoid organs to the peripheral blood circulation. This results in a reduction in peripheral lymphocyte counts, including potentially encephalitogenic T cells. In patients with relapsing multiple sclerosis fingolimod has been shown to be an effective treatment. In phase 2 and phase 3 studies fingolimod-treated patients had reduced disease activity clinically and in MRI. Although severe infectious complications occurred in single cases treated with fingolimod, the frequency of overall infections was comparable in fingolimod-treated patients and controls. Overall, in clinical studies fingolimod was well tolerated and had a favorable safety profile. In follow-up studies with continuous fingolimod, treatment showed sustained efficacy while being well tolerate

    Early and unrestricted access to high-efficacy disease-modifying therapies: a consensus to optimize benefits for people living with multiple sclerosis

    Get PDF
    Healthcare system; Multiple sclerosis; PharmacoeconomicsSistema de atención de la salud; Esclerosis múltiple; FarmacoeconomíaSistema d'atenció de la salut; Esclerosi múltiple; FarmacoeconomiaEarly intervention with high-efficacy disease-modifying therapy (HE DMT) may be the best strategy to delay irreversible neurological damage and progression of multiple sclerosis (MS). In European healthcare systems, however, patient access to HE DMTs in MS is often restricted to later stages of the disease due to restrictions in reimbursement despite broader regulatory labels. Although not every patient should be treated with HE DMTs at the initial stages of the disease, early and unrestricted access to HE DMTs with a positive benefit–risk profile and a reasonable value proposition will provide the freedom of choice for an appropriate treatment based on a shared decision between expert physicians and patients. This will further optimize outcomes and facilitate efficient resource allocation and sustainability in healthcare systems and society.Novartis facilitated two advisory boards on ‘Unrestricted access for RMS therapy and optimal patient outcome’ with physicians, health economists and patient groups to collect insights on the access to MS therapies across Europe as well as on the therapeutic strategy in MS with high efficacy early. These insights contributed to the manuscript content, which was then suggested for publication on a voluntary basis by the experts who wished to be authors. The content is owned and driven by the authors. The Sponsor had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication

    Early Reduction of MRI Activity During 6 Months of Treatment With Cladribine Tablets for Highly Active Relapsing Multiple Sclerosis

    Get PDF
    Active Relapsing Multiple Sclerosis; MRI; CladribineEsclerosis Múltiple Recurrente Activa; Imagen por resonancia magnética; CladribinaEsclerosi múltiple recurrent activa; Imatge per ressonància magnètica; CladribinaBackground and Objectives The onset of action for high-efficacy immunotherapies in multiple sclerosis (MS) is an important parameter. This study (MAGNIFY-MS) evaluates the onset of action of cladribine tablets by observing changes in combined unique active (CUA) MRI lesion counts during the first 6 months of treatment in patients with highly active relapsing MS. Methods MRI was performed at screening, baseline, and at months 1, 2, 3, and 6 after initiating treatment with cladribine tablets 3.5 mg/kg. CUA lesion counts, defined as the sum of T1 gadolinium-enhancing (Gd+) lesions and new or enlarging active T2 lesions (without T1 Gd+), were compared between postbaseline and the baseline period and standardized to the period length and the number of MRIs performed. Results Included in this analysis were 270 patients who received ≥1 dose of cladribine tablets. After treatment initiation, significant reductions in mean CUA lesion counts were observed from month 1 onward compared with the baseline period (−1.193 between month 1 and month 6, −1.500 between month 2 and month 6, and −1.692 between month 3 and month 6; all p < 0.0001). Mean T1 Gd+ lesion counts were decreased from month 2 onward compared with baseline (−0.857 at month 2, −1.355 at month 3, and −1.449 at month 6; all p < 0.0001), whereas the proportion of patients without any CUA lesions increased from 52.0% between month 1 and month 6 to 80.5% between month 3 and month 6. Discussion Findings suggest an early onset of action for cladribine tablets, with an increasing reduction in active MRI lesions over time. Trial Registration Information NCT03364036; Date registered: December 06, 2017.This study was supported by the healthcare business of Merck KGaA, Darmstadt, Germany (CrossRef Funder ID: 10.13039/100009945)

    Specific Patterns of Immune Cell Dynamics May Explain the Early Onset and Prolonged Efficacy of Cladribine Tablets: A MAGNIFY-MS Substudy

    Get PDF
    Cladribina; Cèl·lules immunitàriesCladribina; Células inmunitariasCladribine; Immune cellsBackground and Objectives Cladribine tablets cause a reduction in lymphocytes with a predominant effect on B-cell and T-cell counts. The MAGNIFY-MS substudy reports the dynamic changes on multiple peripheral blood mononuclear cell (PBMC) subtypes and immunoglobulin (Ig) levels over 12 months after the first course of cladribine tablets in patients with highly active relapsing multiple sclerosis (MS). Methods Immunophenotyping was performed at baseline (predose) and at the end of months 1, 2, 3, 6, and 12 after initiating treatment with cladribine tablets. Assessments included lymphocyte subtype counts of CD19+ B cells, CD4+ and CD8+ T cells, CD16+ natural killer cells, plasmablasts, and Igs. Immune cell subtypes were analyzed by flow cytometry, and serum IgG and IgM were analyzed by nephelometric assay. Absolute cell counts and percentage change from baseline were assessed. Results The full analysis set included 57 patients. Rapid reductions in median CD19+, CD20+, memory, activated, and naive B-cell counts were detected, reaching nadir by month 2. Thereafter, total CD19+, CD20+, and naive B-cell counts subsequently reconstituted, but memory B cells remained reduced by 93%–87% for the remainder of the study. The decrease in plasmablasts was slower, reaching nadir at month 3. Decrease in T-cell subtypes was also slower and more moderate compared with B-cell subtypes, reaching nadir between months 3 and 6. IgG and IgM levels remained within the normal range over the 12-month study period. Discussion Cladribine tablets induce a specific pattern of early and sustained PBMC subtype dynamics in the absence of relevant Ig changes: While total B cells were reduced dramatically, T cells were affected significantly less. Naive B cells recovered toward baseline, naive CD4 and CD8 T cells did not, and memory B cells remained reduced. The results help to explain the unique immune depletion and repopulation architecture regarding onset of action and durability of effects of cladribine tablets while largely maintaining immune competence.This work was supported by the healthcare business of Merck KGaA, Darmstadt, Germany (CrossRef Funder ID: 10.13039/100009945)

    Clonal expansions of CD8+ T cells in latently HSV-1-infected human trigeminal ganglia

    Get PDF
    Herpes simplex virus type 1 latency in trigeminal ganglia (TG) is accompanied by a chronic immune cell infiltration. The aim of this study was to analyse the T-cell receptor β-chain repertoire in latently HSV-1 infected human TG. Using complementarity-determining region 3 spectratyping, 74 expanded β-chain sequences were identified in five TG. No clone appeared in more than one subject. Similar clones were present in the right and the left TG of two subjects. This indicates that these T cells are primed in the periphery and recognise the same antigen in the TG of both side

    Quantitative 7T MRI does not detect occult brain damage in neuromyelitis optica

    Get PDF
    Objective: To investigate and compare occult damages in aquaporin-4 (AQP4)-rich periependymal regions in patients with neuromyelitis optica spectrum disorder (NMOSD) vs healthy controls (HCs) and patients with multiple sclerosis (MS) applying quantitative T1 mapping at 7 Tesla (T) in a cross-sectional study. Methods: Eleven patients with NMOSD (median Expanded Disability Status Scale [EDSS] score 3.5, disease duration 9.3 years, age 43.7 years, and 11 female) seropositive for anti-AQP4 antibodies, 7 patients with MS (median EDSS score 1.5, disease duration 3.6, age 30.2 years, and 4 female), and 10 HCs underwent 7T MRI. The imaging protocol included T2*-weighted (w) imaging and an MP2RAGE sequence yielding 3D T1w images and quantitative T1 maps. We semiautomatically marked the lesion-free periependymal area around the cerebral aqueduct and the lateral, third, and fourth ventricles to finally measure and compare the T1 relaxation time within these areas. Results: We did not observe any differences in the T1 relaxation time between patients with NMOSD and HCs (all > 0.05). Contrarily, the T1 relaxation time was longer in patients with MS vs patients with NMOSD (lateral ventricle = 0.056, third ventricle = 0.173, fourth ventricle = 0.016, and cerebral aqueduct = 0.048) and vs HCs (third ventricle = 0.027, fourth ventricle = 0.013, lateral ventricle = 0.043, and cerebral aqueduct = 0.005). Conclusion: Unlike in MS, we did not observe subtle T1 changes in lesion-free periependymal regions in NMOSD, which supports the hypothesis of a rather focal than diffuse brain pathology in NMOSD

    Characteristics of improvements in balance control using vibro-tactile biofeedback of trunk sway for multiple sclerosis patients

    Get PDF
    Background and aims: Previously, we determined that training with vibrotactile feedback (VTfb) of trunk sway improves MS patients’ balance impairment. Here, we posed 5 questions: 1) How many weeks of VTfb training are required to obtain the best short-term carry over effect (CoE) with VTfb? 2) How long does the CoE last once VTfb training terminates? 3) Is the benefit similar for stance and gait? 4) Is position or velocity based VTfb more effective in reducing trunk sway? 5) Do patients’ subjective assessments of balance control improve? Methods: Balance control of 16 MS patients was measured with gyroscopes at the lower trunk. The gyroscopes drove directionally active VTfb in a head-band. Patients trained twice per week with VTfb for 4 weeks to determine when balance control with and without VTfb stopped improving. Thereafter, weekly assessments without VTfb over 4 weeks and at 6 months determined when CoEs ended. Results: A 20% improvement in balance to normal levels occurred with VTfb. Short term CoEs improved from 15 to 20% (p ≤0.001). Medium term (1–4 weeks) CoEs were constant at 19% (p ≤0.001). At 6 months improvement was not significant, 9%. Most improvement was for lateral sway. Equal improvement occurred when angle position or velocity drove VTfb. Subjectively, balance improvements peaked after 3 weeks of training (32%, p ≤0.05). Conclusions: 3–4 weeks VTfb training yields clinically relevant sway reductions and subjective improvements for MS patients during stance and gait. The CoEs lasted at least 1 month. Velocity-based VTfb was equally effective as position-based VTf
    • …
    corecore