38 research outputs found

    Warm molecular gas temperature distribution in six local infrared bright Seyfert galaxies

    Get PDF
    <p><b>A, C, E and G</b>: Summarized data depicting the effect of L-NAME (100 μM) or endothelium removal (denuded) on propofol-induced (does-dependent) changes in luminal diameter in coronary microvessels obtained from control, TRPV1<sup>-/-</sup>, TRPA1<sup>-/-</sup> and TRPAV<sup>-/-</sup> mice, respectively (<i>n</i> = 12). <b>B, D, F and H</b>: Summarized data depicting the effect of Pen A (50 μM) alone and in combination with L-NAME on propofol-induced changes in luminal diameter in coronary microvessels obtained from control, TRPV1<sup>-/-</sup>, TRPA1<sup>-/-</sup> and TRPAV<sup>-/-</sup> mice, respectively (<i>n</i> = 12). Data are expressed as % relaxation ± SEM. *<i>P</i>< 0.05 vs. control.</p

    Fentanyl-induced reward seeking is sex and dose dependent and is prevented by D-cysteine ethylester

    Get PDF
    Introduction: Despite their inclination to induce tolerance, addictive states, and respiratory depression, synthetic opioids are among the most effective clinically administered drugs to treat severe acute/chronic pain and induce surgical anesthesia. Current medical interventions for opioid-induced respiratory depression (OIRD), wooden chest syndrome, and opioid use disorder (OUD) show limited efficacy and are marked by low success in the face of highly potent synthetic opioids such as fentanyl. D-Cysteine ethylester (D-CYSee) prevents OIRD and post-treatment withdrawal in male/female rats and mice with minimal effect on analgesic status. However, the potential aversive or rewarding effects of D-CYSee have yet to be fully characterized and its efficacy could be compromised by interactions with opioid-reward pathology.Methods: Using a model of fentanyl-induced conditioned place preference (CPP), this study evaluated 1) the dose and sex dependent effects of fentanyl to induce rewarding states, and 2) the extent to which D-CYSee alters affective state and the acquisition of fentanyl-induced seeking behaviors.Results: Fentanyl reward-related effects were found to be dose and sex dependent. Male rats exhibited a range-bound dose response centered at 5 µg/kg. Female rats exhibited a CPP only at 50 µg/kg. This dose was effective in 25% of females with the remaining 75% showing no significant CPP at any dose. Pretreatment with 100 mg/kg, but not 10 mg/kg, D-CYSee prevented acquisition of fentanyl seeking in males while both doses were effective at preventing acquisition in females.Discussion: These findings suggest that D-CYSee is an effective co-treatment with prescribed opioids to reduce the development of OUD

    α-Synemin Localizes to the M-band of the Sarcomere Through Interaction with the M10 Region of Titin

    Get PDF
    α-Synemin contains a unique 312 amino acid insert near the end of its C-terminal tail. Therefore we set out to determine if the insert is a site of protein–protein interaction that regulates the sub-cellular localization of this large isoform of synemin. Yeast-two hybrid analysis indicated that this region is a binding site for the M10 region of titin. This was confirmed with GST pull-down assays. Co-immunoprecipitation of endogenous proteins indicated close association of the two proteins in vivo and immunostaining of cardiomyocytes demonstrated co-localization of the proteins at the M-band of the sarcomere.</p

    Propofol causes vasodilation in vivo via TRPA1 ion channels: role of nitric oxide and BKCa channels.

    No full text
    Transient receptor potential (TRP) ion channels of the A1 (TRPA1) and V1 (TRPV1) subtypes are key regulators of vasomotor tone. Propofol is an intravenous anesthetic known to cause vasorelaxation. Our objectives were to examine the extent to which TRPA1 and/or TRPV1 ion channels mediate propofol-induced depressor responses in vivo and to delineate the signaling pathway(s) involved.Mice were subjected to surgery under 1.5-2.5% sevoflurane gas with supplemental oxygen. After a stable baseline in mean arterial pressure (MAP) was achieved propofol (2.5, 5.0, 10.0 mg/kg/min) was administered to assess the hemodynamic actions of the intravenous anesthetic. The effect of nitric oxide synthase (NOS) inhibition with L-NAME and/or calcium-gated K+ channel (BKCa) inhibition with Penetrim A (Pen A), alone and in combination, on propofol-induced decreases in mean arterial pressure were assessed in control C57Bl/6J, TRPA1-/-, TRPV1-/- and double-knockout mice (TRPAV-/-).Propofol decreased MAP in control mice and this effect was markedly attenuated in TRPA1-/- and TRPAV-/- mice but unaffected in TRPV1-/-mice. Moreover, pretreatment with L-NAME or Pen A attenuated the decrease in MAP in control and TRPV1-/- mice, and combined inhibition abolished the depressor response. In contrast, the markedly attenuated propofol-induced depressor response observed in TRPA1-/- and TRPAV-/- mice was unaffected by pre-treatment with Pen A or L-NAME when used either alone or in combination.These data demonstrate for the first time that propofol-induced depressor responses in vivo are predominantly mediated by TRPA1 ion channels with no involvement of TRPV1 ion channels and includes activation of both NOS and BKCa channels
    corecore