10 research outputs found

    Compact and efficient power electronics with applications to battery management systems

    Get PDF
    This work investigates the use of advanced power electronics techniques for a variety of applications to both improve efficiency and decrease the size. The first area of research is on investigating limitations in high density switched-capacitor converters for voltage step-up applications. The results from this could be particularly useful for pulsed power applications. This work uses techniques such as resonance, advanced control, and interleaving in the Dickson converter to avoid common limitations in switched-capacitor circuits. Another area of research is on fast battery charging using active battery management system topologies. These topologies have been proven before but this work expands upon those by using modern power electronics techniques to minimize the size and maximize the efficiency. This is achieved by using high frequency, GaN switches, planar magnetics, and active core resetting in a forward converter. This system was developed to be isolated and bi-directional so multiple active battery management system topologies could be used from the same design

    Centimeter-long electron transport in marine sediments via conductive minerals

    Get PDF
    © 2015 International Society for Microbial Ecology All rights reserved. Centimeter-long electron conduction through marine sediments, in which electrons derived from sulfide in anoxic sediments are transported to oxygen in surficial sediments, may have an important influence on sediment geochemistry. Filamentous bacteria have been proposed to mediate the electron transport, but the filament conductivity could not be verified and other mechanisms are possible. Surprisingly, previous investigations have never actually measured the sediment conductivity or its basic physical properties. Here we report direct measurements that demonstrate centimeter-long electron flow through marine sediments, with conductivities sufficient to account for previously estimated electron fluxes. Conductivity was lost for oxidized sediments, which contrasts with the previously described increase in the conductivity of microbial biofilms upon oxidation. Adding pyrite to the sediments significantly enhanced the conductivity. These results suggest that the role of conductive minerals, which are more commonly found in sediments than centimeter-long microbial filaments, need to be considered when modeling marine sediment biogeochemistry

    Secure LoRa Firmware Update with Adaptive Data Rate Techniques

    No full text
    Internet of Things (IoT) devices rely upon remote firmware updates to fix bugs, update embedded algorithms, and make security enhancements. Remote firmware updates are a significant burden to wireless IoT devices that operate using low-power wide-area network (LPWAN) technologies due to slow data rates. One LPWAN technology, Long Range (LoRa), has the ability to increase the data rate at the expense of range and noise immunity. The optimization of communications for maximum speed is known as adaptive data rate (ADR) techniques, which can be applied to accelerate the firmware update process for any LoRa-enabled IoT device. In this paper, we investigate ADR techniques in an application that provides remote monitoring of cattle using small, battery-powered devices that transmit data on cattle location and health using LoRa. In addition to issues related to firmware update speed, there are significant concerns regarding reliability and security when updating firmware on mobile, energy-constrained devices. A malicious actor could attempt to steal the firmware to gain access to embedded algorithms or enable faulty behavior by injecting their own code into the device. A firmware update could be subverted due to cattle moving out of the LPWAN range or the device battery not being sufficiently charged to complete the update process. To address these concerns, we propose a secure and reliable firmware update process using ADR techniques that is applicable to any mobile or energy-constrained LoRa device. The proposed system is simulated and then implemented to evaluate its performance and security properties

    An Autonomous, Self-Authenticating, and Self-Contained Secure Boot Process for Field-Programmable Gate Arrays

    No full text
    Secure booting within a field-programmable gate array (FPGA) environment is traditionally implemented using hardwired embedded cryptographic primitives and non-volatile memory (NVM)-based keys, whereby an encrypted bitstream is decrypted as it is loaded from an external storage medium, e.g., Flash memory. A novel technique is proposed in this paper that self-authenticates an unencrypted FPGA configuration bitstream loaded into the FPGA during the start-up. The internal configuration access port (ICAP) interface is accessed to read out configuration information of the unencrypted bitstream, which is then used as input to a secure hash function SHA-3 to generate a digest. In contrast to conventional authentication, where the digest is computed and compared with a second pre-computed value, we use the digest as a challenge to a hardware-embedded delay physical unclonable function (PUF) called HELP. The delays of the paths sensitized by the challenges are used to generate a decryption key using the HELP algorithm. The decryption key is used in the second stage of the boot process to decrypt the operating system (OS) and applications. It follows that any type of malicious tampering with the unencrypted bitstream changes the challenges and the corresponding decryption key, resulting in key regeneration failure. A ring oscillator is used as a clock to make the process autonomous (and unstoppable), and a novel on-chip time-to-digital-converter is used to measure path delays, making the proposed boot process completely self-contained, i.e., implemented entirely within the re-configurable fabric and without utilizing any vendor-specific FPGA features

    It is ethical to transplant human stem cells into nonhuman embryos

    No full text
    Human/nonhuman stem cell chimeras will be increasingly applied to study human cells in developing nonhuman animals. Such experiments raise a number of issues that may create further controversy in the stem cell field. Here we outline the scientific value and ethical ramifications of such studies, and suggest how such experiments may be conducted ethically

    Can we use environmental DNA as holotypes?

    No full text
    corecore