6 research outputs found
Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and characterization of eccentric binary black hole mergers
We present , a time domain, inspiral-merger-ringdown
waveform model that describes non-spinning binary black holes systems that
evolve on moderately eccentric orbits. The inspiral evolution is described
using a consistent combination of post-Newtonian theory, self-force and black
hole perturbation theory. Assuming eccentric binaries that circularize prior to
coalescence, we smoothly match the eccentric inspiral with a stand-alone,
quasi-circular merger, which is constructed using machine learning algorithms
that are trained with quasi-circular numerical relativity waveforms. We show
that reproduces with excellent accuracy the dynamics of
quasi-circular compact binaries. We validate using a set of
eccentric numerical relativity waveforms, which
describe eccentric binary black hole mergers with mass-ratios between , and eccentricities ten orbits before merger. We
use this model to explore in detail the physics that can be extracted with
moderately eccentric, non-spinning binary black hole mergers. We use
to show that GW150914, GW151226, GW170104, GW170814 and
GW170608 can be effectively recovered with spinning, quasi-circular templates
if the eccentricity of these events at a gravitational wave frequency of 10Hz
satisfies , respectively.
We show that if these systems have eccentricities at a
gravitational wave frequency of 10Hz, they can be misclassified as
quasi-circular binaries due to parameter space degeneracies between
eccentricity and spin corrections. Using our catalog of eccentric numerical
relativity simulations, we discuss the importance of including higher-order
waveform multipoles in gravitational wave searches of eccentric binary black
hole mergers.Comment: 19 pages, 10 figures, 1 Appendix. v2: we use numerical relativity
simulations to quantify the importance of including higher-order waveform
multipoles for the detection of eccentric binary black hole mergers,
references added. Accepted to Phys. Rev.
Pseudomonas aeruginosa responds to exogenous polyunsaturated fatty acids (PUFAs) by modifying phospholipid composition, membrane permeability, and phenotypes associated with virulence
Abstract Background Pseudomonas aeruginosa, a common opportunistic pathogen, is known to cause infections in a variety of compromised human tissues. An emerging mechanism for microbial survival is the incorporation of exogenous fatty acids to alter the cell’s membrane phospholipid profile. With these findings, we show that exogenous fatty acid exposure leads to changes in bacterial membrane phospholipid structure, membrane permeability, virulence phenotypes and consequent stress responses that may influence survival and persistence of Pseudomonas aeruginosa. Results Thin-layer chromatography and ultra performance liquid chromatography / ESI-mass spectrometry indicated alteration of bacterial phospholipid profiles following growth in the presence of polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation). The exogenously supplied fatty acids were incorporated into the major bacterial phospholipids phosphatidylethanolamine and phosphatidylglycerol. The incorporation of fatty acids increased membrane permeability as judged by both accumulation and exclusion of ethidium bromide. Individual fatty acids were identified as modifying resistance to the cyclic peptide antibiotics polymyxin B and colistin, but not the beta-lactam imipenem. Biofilm formation was increased by several PUFAs and significant fluctuations in swimming motility were observed. Conclusions Our results emphasize the relevance and complexity of exogenous fatty acids in the membrane physiology and pathobiology of a medically important pathogen. P. aeruginosa exhibits versatility with regard to utilization of and response to exogenous fatty acids, perhaps revealing potential strategies for prevention and control of infection
What Do Top Legal Experts Say About the Syria Strikes?
I asked several of the very top legal minds about their views concerning Thursday night’s airstrikes by the United States in response to the Syrian government’s reported use of chemical weapons. I have provided their verbatim responses below, and will be adding more