108 research outputs found

    CHIANTI - an atomic database for emission lines. VII. New Data for X-rays and other improvements

    Get PDF
    The CHIANTI atomic database contains atomic energy levels, wavelengths, radiative transition probabilities, and collisional excitation data for a large number of ions of astrophysical interest. CHIANTI also includes a suite of IDL routines to calculate synthetic spectra and carry out plasma diagnostics. Version 5 has been released, which includes several new features, as well as new data for many ions. The new features in CHIANTI are as follows: the inclusion of ionization and recombination rates to individual excited levels as a means to populate atomic levels; data for Kα and Kβ emission from Fe ii to Fe xxiv; new data for high-energy configurations in Fe xvii to Fe xxiii; and a complete reassessment of level energies and line identifications in the X-ray range, multitemperature particle distributions, and photoexcitation from any user-defined radiation field. New data for ions already in the database, as well as data for ions not present in earlier versions of the database, are also included. Version 5 of CHIANTI represents a major improvement in the calculation of line emissivities and synthetic spectra in the X-ray range and expands and improves theoretical spectra calculations in all other wavelength ranges

    Coronal Temperature Diagnostic Capability of the Hinode/X-Ray Telescope Based on Self-Consistent Calibration

    Full text link
    The X-Ray Telescope (XRT) onboard the Hinode satellite is an X-ray imager that observes the solar corona with unprecedentedly high angular resolution (consistent with its 1" pixel size). XRT has nine X-ray analysis filters with different temperature responses. One of the most significant scientific features of this telescope is its capability of diagnosing coronal temperatures from less than 1 MK to more than 10 MK, which has never been accomplished before. To make full use of this capability, accurate calibration of the coronal temperature response of XRT is indispensable and is presented in this article. The effect of on-orbit contamination is also taken into account in the calibration. On the basis of our calibration results, we review the coronal-temperature-diagnostic capability of XRT

    Very High Resolution Solar X-ray Imaging Using Diffractive Optics

    Full text link
    This paper describes the development of X-ray diffractive optics for imaging solar flares with better than 0.1 arcsec angular resolution. X-ray images with this resolution of the \geq10 MK plasma in solar active regions and solar flares would allow the cross-sectional area of magnetic loops to be resolved and the coronal flare energy release region itself to be probed. The objective of this work is to obtain X-ray images in the iron-line complex at 6.7 keV observed during solar flares with an angular resolution as fine as 0.1 arcsec - over an order of magnitude finer than is now possible. This line emission is from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma at temperatures in excess of \approx10 MK. It provides information on the flare morphology, the iron abundance, and the distribution of the hot plasma. Studying how this plasma is heated to such high temperatures in such short times during solar flares is of critical importance in understanding these powerful transient events, one of the major objectives of solar physics. We describe the design, fabrication, and testing of phase zone plate X-ray lenses with focal lengths of \approx100 m at these energies that would be capable of achieving these objectives. We show how such lenses could be included on a two-spacecraft formation-flying mission with the lenses on the spacecraft closest to the Sun and an X-ray imaging array on the second spacecraft in the focal plane \approx100 m away. High resolution X-ray images could be obtained when the two spacecraft are aligned with the region of interest on the Sun. Requirements and constraints for the control of the two spacecraft are discussed together with the overall feasibility of such a formation-flying mission

    Explosive events - swirling transition region jets

    Full text link
    In this paper, we extend our earlier work to provide additional evidence for an alternative scenario to explain the nature of so-called `explosive events'. The bi-directed, fast Doppler motion of explosive events observed spectroscopically in the transition region emission is classically interpreted as a pair of bidirectional jets moving upward and downward from a reconnection site. We discuss the problems of such a model. In our previous work, we focused basically on the discrepancy of fast Doppler motion without detectable motion in the image plane. We now suggest an alternative scenario for the explosive events, based on our observations of spectral line tilts and bifurcated structure in some events. Both features are indicative of rotational motion in narrow structures. We explain the bifurcation as the result of rotation of hollow cylindrical structures and demonstrate that such a sheath model can also be applied to explain the nature of the puzzling `explosive events'. We find that the spectral tilt, the lack of apparent motion, the bifurcation, and a rapidly growing number of direct observations support an alternative scenario of linear, spicular-sized jets with a strong spinning motion.Comment: 9 pages, 3 figures, accepted for publication in Solar Physic

    EUV Spectra of the Full Solar Disk: Analysis and Results of the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS)

    Get PDF
    We analyze EUV spectra of the full solar disk from the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) spanning a period of two years. The observations were obtained via a fortuitous off-axis light path in the 140 -- 270 Angstrom passband. The general appearance of the spectra remained relatively stable over the two-year time period, but did show significant variations of up to 25% between two sets of Fe lines that show peak emission at 1 MK and 2 MK. The variations occur at a measured period of 27.2 days and are caused by regions of hotter and cooler plasma rotating into, and out of, the field of view. The CHIANTI spectral code is employed to determine plasma temperatures, densities, and emission measures. A set of five isothermal plasmas fit the full disk spectra well. A 1 -- 2 MK plasma of Fe contributes 85% of the total emission in the CHIPS passband. The standard Differential Emission Measures (DEMs) supplied with the CHIANTI package do not fit the CHIPS spectra well as they over-predict emission at temperatures below log(T) = 6.0 and above log(T) = 6.3. The results are important for cross-calibrating TIMED, SORCE, SOHO/EIT, and CDS/GIS, as well as the recently launched Solar Dynamics Observatory.Comment: 27 Pages, 13 Figure

    EIS/Hinode observations of Doppler flow seen through the 40 arcsec wide slit

    Get PDF
    The Extreme ultraviolet Imaging Spectrometer (EIS) on board Hinode is the first solar telescope to obtain wide slit spectral images that can be used for detecting Doppler flows in transition region and coronal lines on the Sun and to relate them to their surrounding small scale dynamics. We select EIS lines covering the temperature range 6x10^4 K to 2x10^6 K that give spectrally pure images of the Sun with the 40 arcsec slit. In these images Doppler shifts are seen as horizontal brightenings. Inside the image it is difficult to distinguish shifts from horizontal structures but emission beyond the image edge can be unambiguously identified as a line shift in several lines separated from others on their blue or red side by more than the width of the spectrometer slit (40 pixels). In the blue wing of He II, we find a large number of events with properties (size and lifetime) similar to the well-studied explosive events seen in the ultraviolet spectral range. Comparison with X-Ray Telescope (XRT) images shows many Doppler shift events at the footpoints of small X-ray loops. The most spectacular event observed showed a strong blue shift in transition region and lower corona lines from a small X-ray spot that lasted less than 7 min. The emission appears to be near a cool coronal loop connecting an X-ray bright point to an adjacent region of quiet Sun. The width of the emission implies a line-of-sight velocity of 220 km/s. In addition, we show an example of an Fe XV shift with a velocity about 120 km/s, coming from what looks like a narrow loop leg connecting a small X-ray brightening to a larger region of X-ray emission.Comment: 12 pages, 8 figures, to be published in Solar Physic

    An Asymmetric Cone Model for Halo Coronal Mass Ejections

    Full text link
    Due to projection effects, coronagraphic observations cannot uniquely determine parameters relevant to the geoeffectiveness of CMEs, such as the true propagation speed, width, or source location. The Cone Model for Coronal Mass Ejections (CMEs) has been studied in this respect and it could be used to obtain these parameters. There are evidences that some CMEs initiate from a flux-rope topology. It seems that these CMEs should be elongated along the flux-rope axis and the cross section of the cone base should be rather elliptical than circular. In the present paper we applied an asymmetric cone model to get the real space parameters of frontsided halo CMEs (HCMEs) recorded by SOHO/LASCO coronagraphs in 2002. The cone model parameters are generated through a fitting procedure to the projected speeds measured at different position angles on the plane of the sky. We consider models with the apex of the cone located at the center and surface of the Sun. The results are compared to the standard symmetric cone model

    An evaluation of possible mechanisms for anomalous resistivity in the solar corona

    Full text link
    A wide variety of transient events in the solar corona seem to require explanations that invoke fast reconnection. Theoretical models explaining fast reconnection often rely on enhanced resistivity. We start with data derived from observed reconnection rates in solar flares and seek to reconcile them with the chaos-induced resistivity model of Numata & Yoshida (2002) and with resistivity arising out of the kinetic Alfv\'en wave (KAW) instability. We find that the resistivities arising from either of these mechanisms, when localized over lengthscales of the order of an ion skin depth, are capable of explaining the observationally mandated Lundquist numbers.Comment: Accepted, Solar Physic

    Off-limb (spicule) DEM distribution from SoHO/SUMER observations

    Full text link
    In the present work we derive a Differential Emission Measure (DEM) dis- tribution from a region dominated by spicules. We use spectral data from the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer on-board the Solar Heliospheric Observatory (SoHO) covering the entire SUMER wavelength range taken off-limb in the Northern polar coronal hole to construct this DEM distribution using the CHIANTI atomic database. This distribution is then used to study the thermal properties of the emission contributing to the 171 {\AA} channel in the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO). From our off-limb DEM we found that the radiance in the AIA 171 {\AA} channel is dominated by emission from the Fe ix 171.07 {\AA} line and has sparingly little contribution from other lines. The product of the Fe ix 171.07 {\AA} line contribution function with the off-limb DEM was found to have a maximum at logTmax (K) = 5.8 indicating that during spicule observations the emission in this line comes from plasma at transition region temperatures rather than coronal. For comparison, the same product with a quiet Sun and prominence DEM were found to have a maximum at logT max (K) = 5.9 and logTmax (K) = 5.7, respectively. We point out that the interpretation of data obtained from the AIA 171 {\AA} filter should be done with foreknowledge of the thermal nature of the observed phenomenon. For example, with an off-limb DEM we find that only 3.6% of the plasma is above a million degrees, whereas using a quiet Sun DEM, this contribution rises to 15%.Comment: 12 pages, 6 figures accepted by Solar Physic

    Coronal Diagnostics from Narrowband Images around 30.4 nm

    Full text link
    Images taken in the band centered at 30.4 nm are routinely used to map the radiance of the He II Ly alpha line on the solar disk. That line is one of the strongest, if not the strongest, line in the EUV observed in the solar spectrum, and one of the few lines in that wavelength range providing information on the upper chromosphere or lower transition region. However, when observing the off-limb corona the contribution from the nearby Si XI 30.3 nm line can become significant. In this work we aim at estimating the relative contribution of those two lines in the solar corona around the minimum of solar activity. We combine measurements from CDS taken in August 2008 with temperature and density profiles from semiempirical models of the corona to compute the radiances of the two lines, and of other representative coronal lines (e.g., Mg X 62.5 nm, Si XII 52.1 nm). Considering both diagnosed quantities from line ratios (temperatures and densities) and line radiances in absolute units, we obtain a good overall match between observations and models. We find that the Si XI line dominates the He II line from just above the limb up to ~2 R_Sun in streamers, while its contribution to narrowband imaging in the 30.4 nm band is expected to become smaller, even negligible in the corona beyond ~2 - 3 R_Sun, the precise value being strongly dependent on the coronal temperature profile.Comment: 26 pages, 11 figures; to be published in: Solar Physic
    corecore