39 research outputs found

    Individual neutron monitoring in workplaces with mixed neutron/photon radiation

    Get PDF
    EVIDOS (‘evaluation of individual dosimetry in mixed neutron and photon radiation fields') is an European Commission (EC)-sponsored project that aims at a significant improvement of radiation protection dosimetry in mixed neutron/photon fields via spectrometric and dosimetric investigations in representative workplaces of the nuclear industry. In particular, new spectrometry methods are developed that provide the energy and direction distribution of the neutron fluence from which the reference dosimetric quantities are derived and compared to the readings of dosemeters. The final results of the project will be a comprehensive set of spectrometric and dosimetric data for the workplaces and an analysis of the performance of dosemeters, including novel electronic dosemeters. This paper gives an overview of the project and focuses on the results from measurements performed in calibration fields with broad energy distributions (simulated workplace fields) and on the first results from workplaces in the nuclear industry, inside a boiling water reactor and around a spent fuel transport cas

    Electronic neutron personal dosemeters: their performance in mixed radiation fields in nuclear power plants

    Get PDF
    This work describes spectral distributions of neutrons obtained as function of energy and direction at four workplace fields at the Krümmel reactor in Germany. Values of personal dose equivalent Hp(10) and effective dose E are determined for different directions of a person's orientation in these fields and readings of personal neutron dosemeters—especially electronic dosemeters—are discussed with respect to Hp(10) and

    Summary of personal neutron dosemeter results obtained within the EVIDOS project

    Get PDF
    Within the EC project EVIDOS (‘Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields'), different types of active neutron personal dosemeters (and some passive ones) were tested in workplace fields at nuclear installations in Europe. The results of the measurements which have been performed up to now are summarised and compared to our currently best estimates of the personal dose equivalent Hp(10). Under- and over-readings by more than a factor of two for the same dosemeter in different workplace fields indicate that in most cases the use of field-specific correction factors is require

    Mild and selective mono-iodination of unprotected peptides as initial step for the synthesis of bioimaging probes.

    No full text
    Chemoselective functionalization of peptides and proteins to selectively introduce residues for detection, capture, or specific derivatization is of high interest to the synthetic community. Here we report a new method for the mild and effective mono iodination of tyrosine residues in fully unprotected peptides. This method is highly chemoselective and compatible with a wide variety of functional groups. The introduced iodine can subsequently serve as a handle for further functionalization such as introduction of fluorescent dyes and thus be used for chemoselective labeling of isolated peptides

    Identification and characterization of a single high-affinity fatty acid binding site in human serum albumin

    No full text
    A single high-affinity fatty acid binding site in the important human transport protein serum albumin (HSA) is identified and characterized using an NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl)-C(12) fatty acid. This ligand exhibits a 1:1 binding stoichiometry in its HSA complex with high site-specificity. The complex dissociation constant is determined by titration experiments as well as radioactive equilibrium dialysis. Competition experiments with the known HSA-binding drugs warfarin and ibuprofen confirm the new binding site to be different from Sudlow-sites I and II. These binding studies are extended to other albumin binders and fatty acid derivatives. Furthermore an X-ray crystal structure allows locating the binding site in HSA subdomain IIA. The knowledge about this novel HSA site will be important for drug depot development and for understanding drug-protein interaction, which are important prerequisites for modulation of drug pharmacokinetics

    Synthesis of GPR40 targeting 3 H- and 18 F-probes towards selective beta cell imaging

    No full text
    Item does not contain fulltextDiabetes affects an increasing number of patients worldwide and is responsible for a significant rise in healthcare expenses. Imaging of beta-cells in vivo is expected to contribute to an improved understanding of the underlying pathophysiology, improved diagnosis, and development of new treatment options for diabetes. Here, we describe the first radiosyntheses of [3 H]-TAK875 and [18 F]-TAK875 derivatives to be used as beta-cell imaging probes addressing the free fatty acid receptor 1 (FFAR1/GPR40). The fluorine-labeled derivative showed similar agonistic activity as TAK875 in a functional assay. The radiosynthesis of the 18 F-labelled tracer 2a was achieved with 16.7 +/- 5.7% radiochemical yield in a total synthesis time of 60-70 min

    Synthesis and Characterization of a Promising Novel FFAR1/GPR40 Targeting Fluorescent Probe for beta-Cell Imaging

    No full text
    Item does not contain fulltextDiabetes affects an increasing number of patients worldwide and is responsible for a significant rise in healthcare expenses. Imaging of beta-cells bears the potential to contribute to an improved understanding, diagnosis, and development of new treatment options for diabetes. Here, we describe the first small molecule fluorescent probe targeting the free fatty acid receptor 1 (FFAR1/GPR40). This receptor is highly expressed on beta-cells, and was up to now unexplored for imaging purposes. We designed a novel probe by facile modification of the selective and potent FFAR1 agonist TAK-875. Effective and specific binding of the probe was demonstrated using FFAR1 overexpressing cells. We also successfully labeled FFAR1 on MIN6 and INS1E cells, two widely used beta-cell models, by applying an effective amplification protocol. Finally, we showed that the probe is capable of inducing insulin secretion in a glucose-dependent manner, thus demonstrating that functional activity of the probe was maintained. These results suggest that our probe represents a first important step to successful beta-cell imaging by targeting FFAR1. The developed probe may prove to be particularly useful for in vitro and ex vivo studies of diabetic cellular and animal models to gain new insights into disease pathogenesis
    corecore