32 research outputs found

    Structure and Corrosion Resistance of Nickel–Molybdenum Alloy Coatings

    Get PDF
    Electrolytic Ni–Mo alloy coatings were obtained from the galvanic bath, at the temperature of T = 60 C under galvanostatic conditions using a cathodic current density of j = 80 mA cm2. Surface morphology was studied using a scanning electron microscopy. Chemical composition of obtained coatings was determined by the energy dispersive spectroscopy. Structural studies were carried out using an X-ray diffraction method. Electrochemical corrosion resistance tests were carried out in 5% NaCl solution. It was found that X-ray diffraction investigations of all obtained coatings showed the characteristic “halo”, which suggests that the obtained deposits have an amorphous structure. Chemical composition and corrosion resistance of the electrolytic Ni–Mo coatings depend on the concentration of Na2MoO4 2H2O in a galvanic bath. With the increase of the molybdenum content in the alloy coatings, their corrosion resistance increases

    Modification of niobium surfaces using plasma electrolytic oxidation in silicate solutions

    Get PDF
    Herein, a study of the plasma electrolytic oxidation (PEO) of niobium in an anodising bath composed of potassium silicate (K2SiO3) and potassium hydroxide (KOH) is reported. The effects of the K2SiO3 concentration in the bath and the process voltage on the characteristics of the obtained oxide layers were assessed. Compact, barrier-type oxide layers were obtained when the process voltage did not exceed the breakdown potential of the oxide layer. When this threshold was breached, the morphology of the oxide layer changed markedly, which is typical of PEO. A significant amount of silicon, in the form of amorphous silica, was incorporated into the oxide coatings under these conditions compared with the amount obtained with conventional anodising. This surface modification technique led to an improvement in the corrosion resistance of niobium in Ringer’s solution, regardless of the imposed process conditions

    Ordering process of Fe28Al and Fe28Al5Cr alloys

    Get PDF
    Purpose: The comparison of ordering process in Fe28Al and Fe28Al5Cr alloys annealed for 8, 16 and 48 hours at 1000°C was performed. The composition of studied alloys is closed to one of Fe3Al phase. Design/methodology/approach: The studied alloys were melted in induction furnace under vacuum. Next the alloys were gravitatively casted into cylindrical graphite moulds. The alloy samples were annealed at 1000°C for 8, 16 and 48 hours. The ordering process was analyzed by X-ray diffraction, Mössbauer spectroscopy and positron annihilation methods. Findings: Different behaviour of Fe28Al and Fe28Al5Cr alloys during annealing for 8, 16 and 48 hours at 1000°C was found. The Fe3Al phase of DO3 type structure was stated only in the sample of Fe28Al alloy annealed for 48 hours. The FeAl phase appeared to be the main phase in the other samples. Research limitations/implications: The applied investigation methods appeared to be useful in the studies of long range ordering process. Application of Rietveld refinement method enabled the verification of qualitative phase analysis and the determination of lattice constant parameters. Relatively great grain sizes in studied samples made the exact determination of long range ordering parameters difficult. Practical implications: The information on the phase transformation during the heat treatment of alloys, including long range ordering, are of prime importance for technological processing. The structures with long range ordering significantly affect the properties of alloys with intermetallic phases. Originality/value: Good correlation between the results of X-ray diffraction, Mōssbauer spectroscopy and positron annihilation methods were obtained. Addition of chromium made the long range ordering process slower

    Microstructure and properties of YSZ coatings prepared by plasma spray physical vapor deposition for biomedical application

    Get PDF
    This paper presents the study of microstructure and properties of 8 mol% yttrium stabilized zirconia coating fabricated by Plasma Spray Physical Vapor Deposition technique on commercial pure titanium. The coating was characterized by X-ray diffraction, high resolution scanning electron microscope, profilometer, nanoindentation and nanomachining tests. The X-ray phase analysis exhibit the tetragonal Zr0.935Y0.065O1.968, TiO and α-Ti phases. The Rietveld refinement technique were indicated the changes of crystal structure of the produced coatings. The characteristic structure of columns were observed in High Resolutions Scanning Electron Microscopy. Moreover, the obtained coating had various development of surfaces, thickness was equal to 3.1(1) μm and roughness 0.40(7) μm. Furthermore, the production coatings did not show microcracks, delamination and crumbing. The performed experiment encourages carried out us to tests for osseointegration

    Structural analysis and corrosion studies on an ISO 5832-9 biomedical alloy with TiO2 sol–gel layers

    Get PDF
    The aim of this study was to demonstrate the relationship between the structural and corrosion properties of an ISO 5832-9 biomedical alloy modified with titanium dioxide (TiO2) layers. These layers were obtained via the sol–gel method by acid-catalyzed hydrolysis of titanium isopropoxide in isopropanol solution. To obtain TiO2 layers with different structural properties, the coated samples were annealed at temperatures of 200, 300, 400, 450, 500, 600 and 800 C for 2 h. For all the prepared samples, accelerated corrosion measurements were performed in Tyrode’s physiological solution using electrochemical methods. The most important corrosion parameters were determined: corrosion potential, polarization resistance, corrosion rate, breakdown and repassivation potentials. Corrosion damage was analyzed using scanning electron microscopy. Structural analysis was carried out for selected TiO2 coatings annealed at 200, 400, 600 and 800 C. In addition, the morphology, chemical composition, crystallinity, thickness and density of the deposited TiO2 layers were determined using suitable electron and X-ray measurement methods. It was shown that the structure and character of interactions between substrate and deposited TiO2 layers depended on annealing temperature. All the obtained TiO2 coatings exhibit anticorrosion properties, but these properties are related to the crystalline structure and character of substrate–layer interaction. From the point of view of corrosion, the best TiO2 sol–gel coatings for stainless steel intended for biomedical applications seem to be those obtained at 400 C.This study was supported by Grant No. N N507 501339 of the National Science Centre. The authors wish to express their thanks to J. Borowski (MEDGAL, Poland) for the Rex 734 alloy

    Propriedades de ZrO2 (Y2 O3) reciclado proveniente da confecção de próteses dentárias

    Get PDF
    RESUMO O objetivo deste trabalho foi a recuperação de descartes de ZrO2(Y2O3) oriundos de laboratórios de próteses dentárias, a partir do seu reprocessamento. Os descartes de ZrO2(Y2O3) foram fragmentados, peneirados e calcinados a 900ºC. Pós com tamanho menor que 32μm foram prensados uniaxialmente a 100MPa e sinterizados em temperaturas entre 1400 e 1600ºC-120min. Análise de difração de raios X realizadas nos materiais calcinados indicaram a presença majoritária da fase ZrO2 tetragonal. Os compactos apresentaram densidade a verde próximo a 47% e as amostras sinterizadas tiveram sua densidade relativa variando entre 83,5% e 95%, para temperaturas de sinterização de 1400 e 1600ºC, respectivamente. Os resultados da análise de difração de raios X indicaram a presença da fase ZrO2 tetragonal, com dureza Vickers e tenacidade máxima obtidos para as amostras sinterizadas a 1600ºC, da ordem de 1100 HV e 5,7 MPa.m1/2 respectivamente

    Study on crystallization phenomenon and thermal stability of binary Ni–Nb amorphous alloy

    Get PDF
    In this paper, a ribbon of binary Ni–Nb amorphous alloy was prepared by the melt spinning technique. Glass transition and crystallization phenomenon of the alloy were investigated by differential scanning calorimetry. Thermal properties of the ribbon of binary Ni–Nb upon heating and cooling were analysed by DTA at a heating/ cooling rate of 0.5 K s-1 under the purified argon atmosphere. The thermal stability of Ni–Nb amorphous alloy was studied by using an X-ray diffractometer equipped with an in situ heating system. The structure and fracture morphology of the ribbons were examined by X-ray diffraction and scanning electron microscopy methods

    Bioactive coatings obtained by electrophoretic deposition on Ti15Mo alloy

    No full text
    corecore