37 research outputs found

    Electrospun antimony doped tin oxide (ATO) nanofibers as a versatile conducting matrix

    Get PDF
    Nanoparticles of ATO (antimony doped tin oxide) were used to produce thick conductive, free standing mats of nanofibers via electrospinning. These fibrous mats were incorporated into polymer films to produce a transparent conducting polymer foil. Moreover, the fiber mats can serve as porous electrodes for electrodeposition of Prussian Blue and TiO2 and were tested in dye-sensitized solar cells

    Photoelectrochemical characterization of electrodeposited ZnO thin films sensitized by octacarboxymetallophthalocyanine derivatives

    Get PDF
    Hybrid thin films of crystalline zinc oxide (ZnO) modified by different octacarboxymetallophthalocyanines (MOCPc) were prepared by the readsorption method. Homogeneously blue or green thin films were formed. The photoelectrochemical characteristics of the electrodes were studied by time-resolved photocurrent measurements. Zinc(II) 2,3,9,10,16,17,23,24-octacarboxyphthalocyanine (ZnOCPc) showed considerably large quantum efficiency in sensitization of ZnO, one of the highest quantum efficiencies obtained so far with phthalocyanine-type sensitizers on nanocrystalline ZnO films

    Tuning the optical properties of 2D monolayer silver-bismuth bromide double perovskite by halide substitution

    Get PDF
    : Silver-bismuth double perovskites are promising replacement materials for lead-based ones in photovoltaic (PV) devices due to the lower toxicity and enhanced stability to environmental factors. In addition, they might even be more suitable for indoor PV, due to the size of their bandgap better matching white LEDs emission. Unfortunately, their optoelectronic performance does not reach that of the lead-based counterparts, because of the indirect nature of the band gap and the high exciton binding energy. One strategy to improve the electronic properties is the dimensional reduction from the 3D to the 2D perovskite structure, which features a direct band gap, as it has been reported for 2D monolayer derivates of Cs2AgBiBr6obtained by substituting Cs+cations with bulky alkylammonium cations. However, a similar dimensional reduction also brings to a band gap opening, limiting light absorption in the visible. In this work, we report on the achievement of a bathochromic shift in the absorption features of a butylammonium-based silver-bismuth bromide monolayer double perovskite through doping with iodide and study the optical properties and stability of the resulting thin films in environmental conditions. These species might constitute the starting point to design future sustainable materials to implement as active components in indoor photovoltaic devices used to power the IoT

    Symmetrically and unsymmetrically substituted carboxy phthalocyanines as sensitizers for nanoporous ZnO films

    Get PDF
    The photoelectroectrochemical studies of water soluble octacarboxylated oxotitanium (OTiOCPc), zinc (ZnOCPC), hydroxyaluminium ((OH)AlOCPc), dihydroxysilicon ((OH)2SiOCPc), hydroxygallium (OHGaOCPc) and low symmetry zinc monocarboxy (ZnMCPc) phthalocyanines were performed. The dyes were adsorbed to nanoporous ZnO electrodeposited in the presence of eosin Y as structure directing agent (SDA) on FTO substrates by refluxing or soaking the films in a solution containing the dye of interest such that a full surface coverage was achieved. High external (IPCE) and internal (APCE) quantum efficiencies of up to 50.6% and 96.7% were achieved for the OTiOCPc complex. There was a lower overall cell efficiency for cells sensitized with phthalocyanines containing hydroxyl as axial ligand ZnO/(OH)2SiOCPc, ZnO/(OH)GaOCPc and (OH)AlOCPc because of strong aggregation on the surface of the electrodes. To further suppress dye aggregation, the zinc complex of a new monocarboxylated phthalocyanine sensitizer with bulky naphtho side groups (ZnMCPc) was employed. Among the studied sensitizers, ZnMCPc gave the highest overall cell efficiency of phthalocyanine electrodeposited on ZnO of η = 0.48%

    Characterization of porphyrin nanorods on fluorine doped tin oxide glass sheet

    Get PDF
    Porphyrin nanorods (PNR) have been fabricated by electrostatic self-assembly of two oppositely charged porphyrin molecules. The free base meso-tetra-(4-phenylsulphonate) porphyrin (TPPS4)4) served as negatively charged counterpart for the positively charged metallo meso-tetra(4-NN-methylpyridyl) porphyrins (MTM’PyP) with either Sn, Co, Mn or In as central metal M. Films of PNR were prepared on fluorine doped tin oxide glass sheets (FTO) by using a drop-dry method. The electronic spectra revealed J-aggregation of the charged molecules for the colloid PNR as well as for the films. Transmission electron microscopy confirmed the formation of porphyrin nanorods. The laser microscope and scanning electron microscope (SEM) images of the PNR/FTO films showed the formation of three kinds of structures in the films which consist of differently branched or linear needles with their main axis grown in the direction of the solvent flow during preparation. During cyclic voltammetry either applying negative potentials from 0.0 V to -1.0 V or positive potentials from 0.0 V to ++2.2 V irreversible reduction or oxidation reactions were detected for the films. Consistently, SEM images taken following cyclic voltammetry showed the disintegration of the PNR on the films into smaller subunits. Spectroelectrochemical measurements showed the formation of porphyrin anionic radicals during oxidation by a decrease in the absorption intensities and broadening of spectra with an additional band appearing around 900 nm. A similar trend was observed when negative potentials were applied but in this case the cationic radical was produced. In both cases the decrease of the intensity of the J-aggregate confirms a loss of intermolecular coupling, again consistent with the smaller subunits observed in SEM analysis

    Opportunities from Doping of Non-Critical Metal Oxides in Last Generation Light-Conversion Devices

    Get PDF
    The need to develop sustainable energy solutions is an urgent requirement for society, with the additional requirement to limit dependence on critical raw materials, within a virtuous circular economy model. In this framework, it is essential to identify new avenues for light-conversion into clean energy and fuels exploiting largely available materials and green production methods. Metal oxide semiconductors (MOSs) emerge among other species for their remarkable environmental stability, chemical tunability, and optoelectronic properties. MOSs are often key constituents in next generation energy devices, mainly in the role of charge selective layers. Their use as light harvesters is hitherto rather limited, but progressively emerging. One of the key strategies to boost their properties involves doping, that can improve charge mobility, light absorption and tune band structures to maximize charge separation at heterojunctions. In this review, effective methods to dope MOSs and to exploit the derived benefits in relation to performance enhancement in different types of devices are identified and critically compared. The work is focused specifically on the best opportunities coming from the use of non-critical raw materials, so as to contribute in defining an economically feasible roadmap for light conversion technologies based on these highly stable and widely available compounds

    Ultrafast Photodynamics of the Indoline Dye D149 Adsorbed to Porous ZnO in Dye‐Sensitized Solar Cells

    Get PDF
    We investigate the ultrafast dynamics of the photoinduced electron transfer between surface-adsorbed indoline D149 dye and porous ZnO as used in the working electrodes of dye-sensitized solar cells. Transient absorption spectroscopy was conducted on the dye in solution, on solid state samples and for the latter in contact to a I−/I3− redox electrolyte typical for dye-sensitized solar cells to elucidate the effect of each component in the observed dynamics. D149 in a solution of 1:1 acetonitrile and tert-butyl alcohol shows excited-state lifetimes of 300±50 ps. This signature is severely quenched when D149 is adsorbed to ZnO, with the fastest component of the decay trace measured at 150±20 fs due to the charge-transfer mechanism. Absorption bands of the oxidized dye molecule were investigated to determine regeneration times which are in excess of 1 ns. The addition of the redox electrolyte to the system results in faster regeneration times, of the order of 1 ns

    Nanoparticulate dye-semiconductor hybrid materials formed by electrochemical self-assembly as electrodes in photoelectrochemical cells

    Get PDF
    Dye-sensitized zinc oxide thin films were prepared, characterized and optimized for applications as photoelectrochemically active electrodes. Conditions were established under which crystalline thin films of ZnO with a porous texture were formed by electrochemically induced crystallization controlled by structure-directing agents (SDA). Dye molecules were adsorbed either directly as SDA during this preparation step or, preferably, following desorption of a SDA. The external quantum efficiency (IPCE) could thereby be increased significantly. Particular emphasis was laid on dye molecules that absorb in the red part of the visible spectrum. Model experiments under ultrahigh vacuum (UHV) conditions with dye molecules adsorbed on defined crystal planes of single crystals aimed at a deeper understanding of the coupling of the chromophore electronic π-system within molecular aggregates and to the semiconductor surface. Detailed photoelectrochemical kinetic measurements were used to characterize and optimize the electrochemically prepared dye-sensitized ZnO films. Parallel electrical characterization in vacuum served to distinguish between contributions of charge transport within the ZnO semiconductor matrix and the ions of the electrolyte in the pore system of the electrode
    corecore