132 research outputs found

    Human metabolomics: strategies to understand biology

    Get PDF
    Metabolomics provides a direct functional read-out of the physiological status of an organism and is in principle ideally suited to describe someone's health status. Whereas only a limited number of small metabolites are used in the clinics, in inborn errors of metabolism an extensive repertoire of metabolites are used as biomarkers. We discuss that the proper clinical phenotyping is crucial to find biomarkers and obtain biological insights for multifactorial diseases. This requires to study the phenotype dynamics including the concepts of homeostasis and allostasis, that is, the ability to adapt and cope with a challenge. We also elaborate that biology-driven metabolomics platforms (i.e. development of metabolomics technology driven by the need of studying and answering important biomedical questions) addressing clinically relevant pathways and at the same time providing absolute concentrations are key to allow discovery and validation of biomarkers across studies and labs. Following individuals over years will require high throughput metabolomics approaches, which are emerging for nuclear magnetic resonance spectroscopy and direct-infusion mass spectrometry, but should also include the biochemical networks needed for personalized health monitoring

    Sub-Typing of Rheumatic Diseases Based on a Systems Diagnosis Questionnaire

    Get PDF
    The future of personalized medicine depends on advanced diagnostic tools to characterize responders and non-responders to treatment. Systems diagnosis is a new approach which aims to capture a large amount of symptom information from patients to characterize relevant sub-groups.49 patients with a rheumatic disease were characterized using a systems diagnosis questionnaire containing 106 questions based on Chinese and Western medicine symptoms. Categorical principal component analysis (CATPCA) was used to discover differences in symptom patterns between the patients. Two Chinese medicine experts where subsequently asked to rank the Cold and Heat status of all the patients based on the questionnaires. These rankings were used to study the Cold and Heat symptoms used by these practitioners.The CATPCA analysis results in three dimensions. The first dimension is a general factor (40.2% explained variance). In the second dimension (12.5% explained variance) 'anxious', 'worrying', 'uneasy feeling' and 'distressed' were interpreted as the Internal disease stage, and 'aggravate in wind', 'fear of wind' and 'aversion to cold' as the External disease stage. In the third dimension (10.4% explained variance) 'panting s', 'superficial breathing', 'shortness of breath s', 'shortness of breath f' and 'aversion to cold' were interpreted as Cold and 'restless', 'nervous', 'warm feeling', 'dry mouth s' and 'thirst' as Heat related. 'Aversion to cold', 'fear of wind' and 'pain aggravates with cold' are most related to the experts Cold rankings and 'aversion to heat', 'fullness of chest' and 'dry mouth' to the Heat rankings.This study shows that the presented systems diagnosis questionnaire is able to identify groups of symptoms that are relevant for sub-typing patients with a rheumatic disease

    Diagnostic markers based on a computational model of lipoprotein metabolism

    Get PDF
    Abstract Background: Dyslipidemia is an important risk factor for cardiovascular disease and type II diabetes. Lipoprotein diagnostics, such as LDL cholesterol and HDL cholesterol, help to diagnose these diseases. Lipoprotein profile measurements could improve lipoprotein diagnostics, but interpretational complexity has limited their clinical application to date. We have previously developed a computational model called Particle Profiler to interpret lipoprotein profiles. In the current study we further developed and calibrated Particle Profiler using subjects with specific genetic conditions. We subsequently performed technical validation and worked at an initial indication of clinical usefulness starting from available data on lipoprotein concentrations and metabolic fluxes. Since the model outcomes cannot be measured directly, the only available technical validation was corroboration. For an initial indication of clinical usefulness, pooled lipoprotein metabolic flux data was available from subjects with various types of dyslipidemia. Therefore we investigated how well lipoprotein metabolic ratios derived from Particle Profiler distinguished reported dyslipidemic from normolipidemic subjects. Results: We found that the model could fit a range of normolipidemic and dyslipidemic subjects from fifteen out of sixteen studies equally well, with an average 8.8% ± 5.0% fit error; only one study showed a larger fit error. As initial indication of clinical usefulness, we showed that one diagnostic marker based on VLDL metabolic ratios better distinguished dyslipidemic from normolipidemic subjects than triglycerides, HDL cholesterol, or LDL cholesterol. The VLDL metabolic ratios outperformed each of the classical diagnostics separately; they also added power of distinction when included in a multivariate logistic regression model on top of the classical diagnostics. Conclusions: In this study we further developed, calibrated, and corroborated the Particle Profiler computational model using pooled lipoprotein metabolic flux data. From pooled lipoprotein metabolic flux data on dyslipidemic patients, we derived VLDL metabolic ratios that better distinguished normolipidemic from dyslipidemic subjects than standard diagnostics, including HDL cholesterol, triglycerides and LDL cholesterol. Since dyslipidemias are closely linked to cardiovascular disease and diabetes type II development, lipoprotein metabolic ratios are candidate risk markers for these diseases. These ratios can in principle be obtained by applying Particle Profiler to a single lipoprotein profile measurement, which makes clinical application feasible

    Similarities and differences in lipidomics profiles among healthy monozygotic twin pairs.

    Get PDF
    Differences in genetic background and/or environmental exposure among individuals are expected to give rise to differences in measurable characteristics, or phenotypes. Consequently, genetic resemblance and similarities in environment should manifest as similarities in phenotypes. The metabolome reflects many of the system properties, and is therefore an important part of the phenotype. Nevertheless, it has not yet been examined to what extent individuals sharing part of their genome and/or environment indeed have similar metabolomes. Here we present the results of hierarchical clustering of blood plasma lipid profile data obtained by liquid chromatographymass spectrometry from 23 healthy, 18-year-old twin pairs, of which 21 pairs were monozygotic, and 8 of their siblings. For 13 monozygotic twin pairs, within-pair similarities in relative concentrations of the detected lipids were indeed larger than the similarities with any other study participant. We demonstrate such high coclustering to be unexpected on basis of chance. The similarities between dizygotic twins and between nontwin siblings, as well as between nonfamilial participants, were less pronounced. In a number of twin pairs, within-pair dissimilarity of lipid profiles positively correlated with increased blood plasma concentrations of C-reactive protein in one twin. In conclusion, this study demonstrates that in healthy individuals, the individual genetic background contributes to the blood plasma lipid profile. Furthermore, lipid profiling may prove useful in monitoring health status, for example, in the context of personalized medicine. © 2008 Mary Ann Liebert, Inc. Chemicals / CAS: C-Reactive Protein, 9007-41-4; Lipid

    Lipidomics Reveals Multiple Pathway Effects of a Multi-Components Preparation on Lipid Biochemistry in ApoE*3Leiden.CETP Mice

    Get PDF
    Background: Causes and consequences of the complex changes in lipids occurring in the metabolic syndrome are only partly understood. Several interconnected processes are deteriorating, which implies that multi-target approaches might be more successful than strategies based on a limited number of surrogate markers. Preparations from Chinese Medicine (CM) systems have been handed down with documented clinical features similar as metabolic syndrome, which might help developing new intervention for metabolic syndrome. The progress in systems biology and specific animal models created possibilities to assess the effects of such preparations. Here we report the plasma and liver lipidomics results of the intervention effects of a preparation SUB885C in apolipoprotein E3 Leiden cholesteryl ester transfer protein (ApoE*3Leiden.CETP) mice. SUB885C was developed according to the principles of CM for treatment of metabolic syndrome. The cannabinoid receptor type 1 blocker rimonabant was included as a general control for the evaluation of weight and metabolic responses. Methodology/Principal Findings: ApoE*3Leiden.CETP mice with mild hypercholesterolemia were divided into SUB885C-, rimonabant- and non-treated control groups. SUB885C caused no weight loss, but significantly reduced plasma cholesterol (-49%, p <0.001), CETP levels (-31%,

    Immunophenotypic measurable residual disease (MRD) in acute myeloid leukemia: Is multicentric MRD assessment feasible?

    Get PDF
    Flow-cytometric detection of now termed measurable residual disease (MRD) in acute myeloid leukemia (AML) has proven to have an independent prognostic impact. In a previous multicenter study we developed protocols to accurately define leukemia-associated immunophenotypes (LAIPs) at diagnosis. It has, however, not been demonstrated whether the use of the defined LAIPs in the same multicenter setting results in a high concordance between centers in MRD assessment. In the present paper we evaluated whether interpretation of list-mode data (LMD) files, obtained from MRD assessment of previously determined LAIPs during and after treatment, could reliably be performed in a multicenter setting. The percentage of MRD positive cells was simultaneously determined in totally 173 LMD files from 77 AML patients by six participating centers. The quantitative concordance between the six participating centers was meanly 84%, with slight variation of 75%–89%. In addition our data showed that the type and number of LAIPs were of influence on the performance outcome. The highest concordance was observed for LAIPs with cross-lineage expression, followed by LAIPs with an asynchronous antigen expression. Our results imply that immunophenotypic MRD assessment in AML will only be feasible when fully standardized methods are used for reliable multicenter assessment

    Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives

    Get PDF
    Metabolomics involves the unbiased quantitative and qualitative analysis of the complete set of metabolites present in cells, body fluids and tissues (the metabolome). By analyzing differences between metabolomes using biostatistics (multivariate data analysis; pattern recognition), metabolites relevant to a specific phenotypic characteristic can be identified. However, the reliability of the analytical data is a prerequisite for correct biological interpretation in metabolomics analysis. In this review the challenges in quantitative metabolomics analysis with regards to analytical as well as data preprocessing steps are discussed. Recommendations are given on how to optimize and validate comprehensive silylation-based methods from sample extraction and derivatization up to data preprocessing and how to perform quality control during metabolomics studies. The current state of method validation and data preprocessing methods used in published literature are discussed and a perspective on the future research necessary to obtain accurate quantitative data from comprehensive GC-MS data is provided
    corecore