1,191 research outputs found

    Guided Interaction Exploration in Artifact-centric Process Models

    Get PDF
    Artifact-centric process models aim to describe complex processes as a collection of interacting artifacts. Recent development in process mining allow for the discovery of such models. However, the focus is often on the representation of the individual artifacts rather than their interactions. Based on event data we can automatically discover composite state machines representing artifact-centric processes. Moreover, we provide ways of visualizing and quantifying interactions among different artifacts. For example, we are able to highlight strongly correlated behaviours in different artifacts. The approach has been fully implemented as a ProM plug-in; the CSM Miner provides an interactive artifact-centric process discovery tool focussing on interactions. The approach has been evaluated using real life data sets, including the personal loan and overdraft process of a Dutch financial institution.Comment: 10 pages, 4 figures, to be published in proceedings of the 19th IEEE Conference on Business Informatics, CBI 201

    A new and versatile method for the successful conversion of AFLP-TM markers into simple single locus markers

    Get PDF
    Genetic markers can efficiently be obtained by using amplified fragment length polymorphism (AFLP) fingerprinting because no prior information on DNA sequence is required. However, the conversion of AFLP markers from complex fingerprints into simple single locus assays is perceived as problematic because DNA sequence information is required for the design of new locus-specific PCR primers. In addition, single locus polymorphism (SNP) information is required to design an allele-specific assay. This paper describes a new and versatile method for the conversion of AFLP markers into simple assays. The protocol presented in this paper offers solutions for frequently occurring pitfalls and describes a procedure for the identification of the SNP responsible for the AFLP. By following this approach, a high success rate for the conversion of AFLP markers into locus-specific markers was obtained

    Limits to the critical current in Bi2Sr2Ca2Cu3Ox tape conductors: The parallel path model

    Get PDF
    An extensive overview of a model that describes current flow and dissipation in high-quality Bi2Sr2Ca2Cu3Ox superconducting tapes is provided. The parallel path model is based on a superconducting current running in two distinct parallel paths. One of the current paths is formed by grains that are connected at angles below 4°. Dissipation in this strongly linked backbone occurs within the grains and is well described by classical flux-creep theory. The other current path, the weakly linked network, is formed by superconducting grains that are connected at intermediate angles (4°–8°) where dissipation occurs at the grain boundaries. However, grain boundary dissipation in this weakly linked current path does not occur through Josephson weak links, but just as in the strongly linked backbone, is well described by classical flux creep. The results of several experiments on Bi2Sr2Ca2Cu3Ox tapes and single-grained powders that strongly support the parallel path model are presented. The critical current density of Bi2Sr2Ca2Cu3Ox tapes can be scaled as a function of magnetic field angle over the temperature range from 15 K to 77 K. Expressions based on classical flux creep are introduced to describe the dependence of the critical current density of Bi2Sr2Ca2Cu3Ox tapes on the magnetic field and temperature

    Radio LAN acquisition module (RLAM) : recent developments for high resolution data collection systems as implemented for the ONR sea ice mechanics experiment, spring 1994

    Get PDF
    During a recent experiment (April 1994), for the ONR Sea Ice Mechanics Initiative (SIMI), a portable data acquisition system was assembled that included 2 new developments. The first consists of a board, designed for the ISA PC bus incorporating 8 - 24 bit sigma-delta analog-to-digital converter (ADC) channels with 20 bit rms dynamic range. Among the features are programmable bandwidth to 1500 Hz, low power dissipation, digital anti-alias filtering, and a "floating point" mode resulting in a 16 bit word. Secondly, since the telemetry of data at continuous rates in excess of 100K bytes/s was required, hardware & software were developed to use a wireless LAN to network 3 sites up to 5km distant from the data recording system. Details of the system along with test data are described.Funding was provided by the Office of Naval Research under Contract No. N00014-91-J-1296

    Comparing powder magnetization and transport critical current of Bi,Pb(2223) tapes

    Get PDF
    The magnetic field dependence of the critical current in (Bi,Pb)/sub 2/Sr/sub 2/Ca/sub 2/Cu/sub 3/O/sub 10+x/ tapes is compared with the magnetization response of isolated grains extracted from the tapes. Special attention is paid to the low-field behavior. The goal of the experiment is to test the widely-used hypothesis that current paths in these tapes contain both weak- and strong- linked branches, which in low field act in parallel. The data agree with this hypothesis; at temperatures above 50 K the powder magnetization drops off exponentially from the self-field to the irreversibility field, while the transport and magnetization currents in the intact tapes show an extra low-field component. Below 50 K the powder behavior becomes less straightforward, but the parallel-path picture in the tapes still holds

    KPI-based activity planning for people working in flexible processes

    Get PDF
    Planning human activities within business processes often happens based on the same methods and algorithms as are used in the area of manufacturing systems. However, human resources are more complex than machines. Their performance depends on a number of factors, including stress, personal preferences, etc. In this paper we describe an approach for planning activities of people that takes into account business rules and optimises the schedule with respect to one or more KPIs. Taking a task list, a set of rules or constraints and a KPI calculation model as input, we automatically create an executable model that captures all the possible scheduling scenarios. The state space of this executable model is explored to find an optimal schedule

    Climate change risk perceptions of audiences in the climate change blogosphere

    Get PDF
    The Climate Change Risk Perception Model (CCRPM, Van der Linden, 2015) has been used to characterize public risk perceptions; however, little is known about the model’s explanatory power in other (online) contexts. In this study, we extend the model and investigate the risk perceptions of a unique audience: The polarized climate change blogosphere. In total, our model explained 84% of the variance in risk perceptions by integrating socio-demographic characteristics, cognitive factors, experiential processes, socio-cultural influences, and an additional dimension: Trust in scientists and blogs. Although trust and the scientific consensus are useful additions to the model, affect remains the most important predictor of climate change risk perceptions. Surprisingly, the relative importance of social norms and value orientations is minimal. Implications for risk and science communication are discussed.</jats:p

    Guided Interaction Exploration and Performance Analysisin Artifact-Centric Process Models

    Get PDF
    Artifact-centric process models aim to describecomplex processes as a collection of interacting artifacts.Recent development in process mining allow for the dis-covery of such models. However, the focus is often on therepresentation of the individual artifacts rather than theirinteractions. Based on event data, composite state machi-nes representing artifact-centric processes can be discov-ered automatically. Moreover, the study provides ways ofvisualising and quantifying interactions among differentartifacts. For example, strongly correlated behaviours indifferent artifacts can be highlighted. Interesting correla-tions can be subsequently analysed to identify potentialcauses of process performance issues. The study provides astrategy to explore the interactions and performance dif-ferences in this context. The approach has been fullyimplemented as a ProM plug-in; the CSM Miner providesan interactive artifact-centric process discovery toolfocussing on interactions. The approach has been evaluatedusing real life data, to show that the guided exploration ofartifact interactions can successfully identify process per-formance issues

    PEN as self-vetoing structural Material

    Full text link
    Polyethylene Naphtalate (PEN) is a mechanically very favorable polymer. Earlier it was found that thin foils made from PEN can have very high radio-purity compared to other commercially available foils. In fact, PEN is already in use for low background signal transmission applications (cables). Recently it has been realized that PEN also has favorable scintillating properties. In combination, this makes PEN a very promising candidate as a self-vetoing structural material in low background experiments. Components instrumented with light detectors could be built from PEN. This includes detector holders, detector containments, signal transmission links, etc. The current R\&D towards qualification of PEN as a self-vetoing low background structural material is be presented.Comment: 4 pages, 7 figures, contribution to Proceedings of the sixth workshop on Low Radioactivity Techniques 2017, 23-27 May 2017 Seoul, to be published at AIP, editor: D. Leonar

    Strain effects in high temperature superconductors investigated with magneto-optical imaging

    Get PDF
    In order to determine the influence of intermediate deformation steps on the mechanical behavior of Bi-based tapes, the effect of longitudinal applied strain is investigated by means of magneto-optical imaging. The strain is applied in a helium flow-cryostat. Cracks appear soon after the critical current in Bi-based tapes is degraded. All filaments form multiple cracks that grow into tape-wide cracks, running from one filament to the next. The crack location is not caused by stress concentrations in the matrix, but by the mechanically weak colony boundaries. Because of the absence of intermediate rolling steps in the production of Bi/sub 2/Sr/sub 2/CaCu/sub 2/O/sub x/ tapes, a different crack structure is observed compared to Bi/sub 2/Sr/sub 2/Ca/sub 2/Cu/sub 3/O/sub x/ tapes. The relation between the critical current and the formation of cracks is studied. The degradation in critical current before the critical strain is reached may be caused by microcracks that remain undetected by magneto-optical imaging. The influence of strain on the microstructure of YBa/sub 2/Cu/sub 3/O/sub x/ coated conductors is also investigated with magneto-optical imaging. The formation of cracks is believed to be determined by the nickel substrate and related to the Ni-grain size
    corecore