68 research outputs found

    A new life for sterile neutrino dark matter after the pandemic

    Get PDF
    We propose a novel mechanism to generate sterile neutrinos Ξ½s\nu_s in theearly Universe, by converting ordinary neutrinos Ξ½Ξ±\nu_\alpha in scatteringprocesses Ξ½sΞ½Ξ±β†’Ξ½sΞ½s\nu_s\nu_\alpha\to\nu_s\nu_s. After initial production byoscillations, this leads to an exponential growth in the Ξ½s\nu_s abundance. Weshow that such a production regime naturally occurs for self-interactingΞ½s\nu_s, and that this opens up significant new parameter space where Ξ½s\nu_smake up all of the observed dark matter. Our results provide strong motivationto further push the sensitivity of X-ray line searches, and to improve onconstraints from structure formation.<br

    A new life for sterile neutrino dark matter after the pandemic

    Get PDF
    We propose a novel mechanism to generate sterile neutrinos Ξ½s\nu_s in the early Universe, by converting ordinary neutrinos Ξ½Ξ±\nu_\alpha in scattering processes Ξ½sΞ½Ξ±β†’Ξ½sΞ½s\nu_s\nu_\alpha\to\nu_s\nu_s. After initial production by oscillations, this leads to an exponential growth in the Ξ½s\nu_s abundance. We show that such a production regime naturally occurs for self-interacting Ξ½s\nu_s, and that this opens up significant new parameter space where Ξ½s\nu_s make up all of the observed dark matter. Our results provide strong motivation to further push the sensitivity of X-ray line searches, and to improve on constraints from structure formation

    A new life for sterile neutrino dark matter after the pandemic

    Get PDF
    We propose a novel mechanism to generate sterile neutrinos Ξ½s\nu_s in theearly Universe, by converting ordinary neutrinos Ξ½Ξ±\nu_\alpha in scatteringprocesses Ξ½sΞ½Ξ±β†’Ξ½sΞ½s\nu_s\nu_\alpha\to\nu_s\nu_s. After initial production byoscillations, this leads to an exponential growth in the Ξ½s\nu_s abundance. Weshow that such a production regime naturally occurs for self-interactingΞ½s\nu_s, and that this opens up significant new parameter space where Ξ½s\nu_smake up all of the observed dark matter. Our results provide strong motivationto further push the sensitivity of X-ray line searches, and to improve onconstraints from structure formation.<br

    ОбъСмная капнография ΠΊΠ°ΠΊ способ ΠΎΡ†Π΅Π½ΠΊΠΈ эффСктивности Π°Π»ΡŒΠ²Π΅ΠΎΠ»ΡΡ€Π½ΠΎΠΉ вСнтиляции Π² клиничСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅

    Get PDF
    The purpose of the study was to compare the relationship between the dead space volume and tidal volume (VD/VT) using volumetric capnography (VCap) during pressure controlled (PCV) and pressure supported (PSV) ventilation mode in the postoperative period.Materials and methods. 30 randomly assigned cardiac surgical patients undergoing CABG (coronary artery bypass grafting) using ECC (extracorporeal circuit) were included in an observational, prospective study. Patients were connected to the ventilator immediately after ICU admission. After that, monitoring VD/VT, CO2 production (VECO2) as well as ventilation parameters was carried out. The parameters during PCV and PSV mode were statistically evaluated using t-test.Results. Expiratory CO2 (ETCO2) concentration were not significantly different in both PCV or PSV (p=NS), although both VECO2 and minute ventilation (MV) increased during PSV mode (p&lt;0.01). VD/VT in PSV mode was lower than in PCV. Gas exchange represented by alveolar ventilation (VA) was better during PSV (p&lt;0.01). VA was also higher during PSV (p&lt;0.05). The calculated VD/VT ratio differed between PCV and PSV mode (p&lt;0.01).Conclusion. VCap represents a tool for monitoring of CO2 exchange effectivness. We registered a decrease in VD/VT with improved alveolar ventilation (VA) in PSV mode. VCap seems to be a suitable instrument for adjustment of protective lung ventilation.ЦСль исслСдования β€” ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ объСмом ΠΌΠ΅Ρ€Ρ‚Π²ΠΎΠ³ΠΎ пространства ΠΈ Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ объСмом (VD/VT) ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ объСмной ΠΊΠ°ΠΏΠ½ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ (VCap) Π² Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… искусствСнной вСнтиляции Π»Π΅Π³ΠΊΠΈΡ… с управляСмым Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ (PCV) ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ (PSV) Π² послСопСрационном ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π’ обсСрвационноС, проспСктивноС исслСдованиС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ случайного Π²Ρ‹Π±ΠΎΡ€Π° Π²ΠΊΠ»ΡŽΡ‡ΠΈΠ»ΠΈ 30 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΈΠ· отдСлСния сСрдСчно-сосудистой Ρ…ΠΈΡ€ΡƒΡ€Π³ΠΈΠΈ, ΠΏΠ΅Ρ€Π΅Π½Π΅ΡΡˆΠΈΡ… ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΡŽ Π°ΠΎΡ€Ρ‚ΠΎΠΊΠΎΡ€ΠΎΠ½Π°Ρ€Π½ΠΎΠ³ΠΎ ΡˆΡƒΠ½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ (АКШ) с ΡΠΊΡΡ‚Ρ€Π°ΠΊΠΎΡ€ΠΏΠΎΡ€Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΊΡ€ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Ρ‰Π΅Π½ΠΈΠ΅ΠΌ. ΠŸΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π°Π»ΠΈ ΠΊ систСмС вСнтиляции Π»Π΅Π³ΠΊΠΈΡ… сразу ΠΏΡ€ΠΈ поступлСнии Π² ΠΎΡ‚Π΄Π΅Π»Π΅Π½ΠΈΠ΅ интСнсивной Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. Π—Π°Ρ‚Π΅ΠΌ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³ VD/VT, ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ CO2 (VECO2), Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² вСнтиляции. ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ вСнтиляции Π² Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… с управляСмым Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ (PCV) ΠΈ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΎΠΉ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ (PSV) статистичСски ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈΠ Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. НС выявили достовСрных Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ CO2 Π²ΠΎ Π²Ρ‹Π΄Ρ‹Ρ…Π°Π΅ΠΌΠΎΠΌ Π²ΠΎΠ·Π΄ΡƒΡ…Π΅ (ETCO2) ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€Π΅ΠΆΠΈΠΌΠ°ΠΌΠΈ PCV ΠΈ PSV (p=NS), хотя ΠΊΠ°ΠΊ VECO2, Ρ‚Π°ΠΊ ΠΈ минутная вСнтиляция (MV) возрастали Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ PSV (p&lt;0,01). ΠžΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ VD/VT Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ PSV Π±Ρ‹Π»ΠΎ Π½ΠΈΠΆΠ΅, Ρ‡Π΅ΠΌ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ PCV. Π“Π°Π·ΠΎΠΎΠ±ΠΌΠ΅Π½, прСдставлСнный Π°Π»ΡŒΠ²Π΅ΠΎΠ»ΡΡ€Π½ΠΎΠΉ вСнтиляциСй (VA), Π±Ρ‹Π» Π»ΡƒΡ‡ΡˆΠ΅ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ PSV (p&lt;0,01). ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ VA Π±Ρ‹Π» Ρ‚Π°ΠΊΠΆΠ΅ Π²Ρ‹ΡˆΠ΅ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ PSV (p&lt;0,05). РасчСтноС ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ VD/VT Ρ€Π°Π·Π»ΠΈΡ‡Π°Π»ΠΎΡΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ€Π΅ΠΆΠΈΠΌΠ°ΠΌΠΈ PCV ΠΈ PSV (p&lt;0,01).Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ОбъСмная капнография (VCap) являСтся срСдством ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° эффСктивности ΠΎΠ±ΠΌΠ΅Π½Π° CO2. ΠžΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΈ сниТСниС VD/VT с ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π°Π»ΡŒΠ²Π΅ΠΎΠ»ΡΡ€Π½ΠΎΠΉ вСнтиляции (VA) Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ PSV. VCap прСдставляСтся подходящим ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ рСгулирования ΠΏΡ€ΠΎΡ‚Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΉ вСнтиляции Π»Π΅Π³ΠΊΠΈΡ…

    Drug interaction with T-cell receptors: T-cell receptor density determines degree of cross-reactivity

    No full text
    Background: Immune-mediated adverse reactions to drugs are often due to T-cell reactivity, and cross-reactivity is an important problem in pharmacotherapy. Objective: We investigated whether chemical inert drugs can stimulate T cells through their T-cell receptor (TCR) and analyzed the cross-reactivities to related compounds. Methods: We transfected human TCRs isolated from two drug-reactive T-cell clones (TCCs) by PCR into a TCR-negative mouse T-cell hybridoma. The TCCs were isolated from a patient with drug hypersensitivity to the antibacterial sulfonamide sulfamethoxazole (SMX). Results: The transfectants reacted to SMX only in the presence of antigen-presenting cells (APCs). Glutaraldehyde-fixed APCs, however, were sufficient to elicit T-cell stimulation, indicating a processing-independent direct interaction of the drug with the TCR and MHC molecule. The transfected hybridomas secreted IL-2 in a drug dose-dependent manner, whereas the degree of reactivity was dependent on the level of TCR expression. One transfectant reacted not only to SMX but also to related sulfonamide compounds. Interestingly, high TCR expression increased cross-reactivity to other structurally related compounds. In addition, SMX-specific TCR cross-reacted only with sulfonamides bearing a sulfanilamide core structure but not with sulfonamides such as celecoxib, furosemide, or glibenclamide. Conclusions: These results demonstrate that the T-cell reactivity to drugs is solely determined by the TCR. Moreover, these results show that cross-reactivity of structurally similar compounds correlates with the density of the TCR. Stably transfected T-cell hybridomas may represent a powerful screening tool for cross-reactivity of newly generated sulfonamide-containing compounds such as celecoxib
    • …
    corecore