65 research outputs found

    Cx43 regulates mechanotransduction mechanisms in human preterm amniotic membrane defects.

    Get PDF
    OBJECTIVE: The effects of mechanical stimulation in preterm amniotic membrane (AM) defects were explored. METHODS: Preterm AM was collected from women undergoing planned preterm caesarean section (CS) due to fetal growth restriction or emergency CS after spontaneous preterm prelabour rupture of the membranes (sPPROM). AM explants near the cervix or placenta were subjected to trauma and/or mechanical stimulation with the Cx43 antisense. Markers for nuclear morphology (DAPI), myofibroblasts (αSMA), migration (Cx43), inflammation (PGE2 ) and repair (collagen, elastin and transforming growth factor β [TGFβ1 ]) were examined by confocal microscopy, second harmonic generation, qPCR and biochemical assays. RESULTS: In preterm AM defects, myofibroblast nuclei were highly deformed and contractile and expressed αSMA and Cx43. Mechanical stimulation increased collagen fibre polarisation and the effects on matrix markers were dependent on tissue region, disease state, gestational age and the number of fetuses. PGE2 levels were broadly similar but reduced after co-treatment with Cx43 antisense in late sPPROM AM defects. TGFβ1 and Cx43 gene expression were significantly increased after trauma and mechanical stimulation but this response dependent on gestational age. CONCLUSION: Mechanical stimulation affects Cx43 signalling and cell/collagen mechanics in preterm AM defects. Establishing how Cx43 regulates mechanosignalling could be an approach to repair tissue integrity after trauma

    Airway tissue engineering for congenital laryngotracheal disease

    Get PDF
    Regenerative medicine offers hope of a sustainable solution for severe airway disease by the creation of functional, immunocompatible organ replacements. When considering fetuses and newborns, there is a specific spectrum of airway pathologies that could benefit from cell therapy and tissue engineering applications. While hypoplastic lungs associated with congenital diaphragmatic hernia (CDH) could benefit from cellular based treatments aimed at ameliorating lung function, patients with upper airway obstruction could take advantage from a de novo tissue engineering approach. Moreover, the international acceptance of the EXIT procedure as a means of securing the precarious neonatal airway, together with the advent of fetal surgery as a method of heading off postnatal co-morbidities, offers the revolutionary possibility of extending the clinical indication for tissue-engineered airway transplantation to infants affected by diverse severe congenital laryngotracheal malformations. This article outlines the necessary basic components for regenerative medicine solutions in this potential clinical niche

    Connexin 43 is overexpressed in human fetal membrane defects after fetoscopic surgery

    Get PDF
    This project was funded by the RoseTrees Trust (M400, TTC), the QMUL Life Sciences Initiative, Institutional Strategic Support Fund from the Wellcome Trust (105626/Z/14/Z, TTC) and supported by researchers at the National Institute for Health Research, University College London Hospitals Biomedical Research Centre (ALD)

    Potential sealing and repair of human FM defects after trauma with peptide amphiphiles and Cx43 antisense

    Get PDF
    OBJECTIVE: We examined whether peptide amphiphiles functionalised with adhesive, migratory or regenerative sequences could be combined with amniotic fluid (AF) to form plugs that repair fetal membrane (FM) defects after trauma and co-culture with connexin 43 (Cx43) antisense. METHODS: We assessed interactions between peptide amphiphiles and AF and examined the plugs in FM defects after trauma and co-culture with the Cx43antisense. RESULTS: Confocal microscopy confirmed directed self-assembly of peptide amphiphiles with AF to form a plug within minutes, with good mechanical properties. SEM of the plug revealed a multi-layered, nanofibrous network that sealed the FM defect after trauma. Co-culture of the FM defect with Cx43 antisense and plug increased collagen levels but reduced GAG. Culture of the FM defect with peptide amphiphiles incorporating regenerative sequences for 5 days, increased F-actin and nuclear cell contraction, migration and polarization of collagen fibers across the FM defect when compared to control specimens with minimal repair. CONCLUSIONS: Whilst the nanoarchitecture revealed promising conditions to seal iatrogenic FM defects, the peptide amphiphiles need to be designed to maximize repair mechanisms and promote structural compliance with high mechanical tolerance that maintains tissue remodeling with Cx43 antisense for future treatment

    Targeting mechanotransduction mechanisms and tissue weakening signals in the human amniotic membrane

    Get PDF
    Mechanical and inflammatory signals in the fetal membrane play an important role in extracellular matrix (ECM) remodelling in order to dictate the timing of birth. We developed a mechanical model that mimics repetitive stretching of the amniotic membrane (AM) isolated from regions over the placenta (PAM) or cervix (CAM) and examined the effect of cyclic tensile strain (CTS) on mediators involved in mechanotransduction (Cx43, AKT), tissue remodelling (GAGs, elastin, collagen) and inflammation (PGE2, MMPs). In CAM and PAM specimens, the application of CTS increased GAG synthesis, PGE2 release and MMP activity, with concomitant reduction in collagen and elastin content. Co-stimulation with CTS and pharmacological agents that inhibit either Cx43 or AKT, differentially influenced collagen, GAG and elastin in a tissue-dependent manner. SHG confocal imaging of collagen fibres revealed a reduction in SHG intensity after CTS, with regions of disorganisation dependent on tissue location. CTS increased Cx43 and AKT protein and gene expression and the response could be reversed with either CTS, the Cx43 antisense or AKT inhibitor. We demonstrate that targeting Cx43 and AKT prevents strain-induced ECM damage and promotes tissue remodelling mechanisms in the AM. We speculate that a combination of inflammatory and mechanical factors could perturb typical mechanotransduction processes mediated by Cx43 signalling. Cx43 could therefore be a potential therapeutic target to prevent inflammation and preterm premature rupture of the fetal membranes

    Can we improve outcome of congenital diaphragmatic hernia?

    Get PDF
    This review gives an overview of the disease spectrum of congenital diaphragmatic hernia (CDH). Etiological factors, prenatal predictors of survival, new treatment strategies and long-term morbidity are described. Early recognition of problems and improvement of treatment strategies in CDH patients may increase survival and prevent secondary morbidity. Multidisciplinary healthcare is necessary to improve healthcare for CDH patients. Absence of international therapy guidelines, lack of evidence of many therapeutic modalities and the relative low number of CDH patients calls for cooperation between centers with an expertise in the treatment of CDH patients. The international CDH Euro-Consortium is an example of such a collaborative network, which enhances exchange of knowledge, future research and development of treatment protocols
    corecore