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Abstract 

 Regenerative medicine offers hope of a sustainable solution for severe airway disease by 

the creation of functional, immunocompatible organ replacements. When considering 

fetuses and newborns, there is a specific spectrum of airway pathologies that could benefit 

from cell therapy and tissue engineering applications. While hypoplastic lungs associated 

with congenital diaphragmatic hernia (CDH) could benefit from cellular based treatments 

aimed at ameliorating lung function, patients with upper airway obstruction could take 

advantage from a de novo tissue engineering approach. Moreover, the international 

acceptance of the EXIT procedure as a means of securing the precarious neonatal airway, 

together with the advent of fetal surgery as a method of heading off postnatal co-

morbidities, offers the revolutionary possibility of extending the clinical indication for tissue-

engineered airway transplantation to infants affected by diverse severe congenital 

laryngotracheal malformations. This chapter outlines the necessary basic components for 

regenerative medicine solutions in this potential clinical niche. 
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Clinical Background 
 

Tracheal failure is devastating in any patient group, but is particularly emotive within the 

neonatal population. Structural congenital anomalies (Table 1) are the most common cause 

of airway obstruction and insufficiency in this period [1], with malformations forming a 

spectrum of severity affecting any portion of the upper respiratory tract from face to bronchi 

[2]. Although complete congenital laryngotracheobronchial obstruction is rare - the 

European Organization for Rare Diseases reports the prevalence of tracheal agenesis to be 

around 1 in 100,000 births - these anomalies are universally lethal without intervention. 

 

Presentation and diagnosis of extreme laryngotracheal birth defects usually occurs following 

routine prenatal ultrasound scanning with confirmation by in utero MRI [3], but can present 

later with immediate respiratory distress at birth. Without immediate surgical intervention, 

the lack of a patent proximal airway is unsurvivable unless a bypassing pathway exists for 

intubation of the bronchi via associated broncho-oesophageal fistulae. Fortunately, rates of 

prenatal diagnosis are improving allowing planned delivery via the EXIT procedure, where a 

precarious neonatal airway may be salvaged or established de novo via anaesthetic 

techniques or tracheostomy prior to cutting the umbilical cord [4]. An increasing number of 

children are being born alive with previously ‘unsurvivable’ airway defects, with the clinical 

team’s intention to treat by subsequent airway reconstructive procedures (Figure 1). 

 

Anatomical malformations of the fetal trachea may occur in association with a constellation 

of other mediastinal abnormalities; cardiac, vascular and oesophageal malformations are 

particularly common. Definitive surgical correction of the trachea requires careful timing and 

coordination between otolaryngology, cardiothoracics, obstetrics, pediatric surgery and 

neonatal intensive care for maximal chances of survival [5]. In some cases, babies with 

proximal airway anomalies are also found to have an underlying chromosomal abnormality 

[6-8]. The argument for pre- and perinatal treatment of these children is even more 

nebulous given the potential presence of other underlying unsurvivable co-morbidities, and 

for this reason chromosomal and genetic testing via amniocentesis provides vital 

information for counseling parents on treatment options. 
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Despite perinatal intervention, death is sadly inevitable for many of these babies for two 

main reasons. The first of these is the in utero development of secondary severe congenital 

lung disease. Without a patent connection between mouth and lungs to provide a route of 

escape, the constant production of lung fluid overdistends the lungs throughout gestation, 

leading to congestive heart failure in the fetus (hydrops) [9]. In cases of extensive tracheo-

oesophageal connections or CDH, the opposite problem where babies are born with 

hypoplastic lungs may also occur because the fetus has been unable to generate intra-

pulmonary negative pressure in utero [10]. Fetal surgical techniques have gained acceptance 

in a variety of conditions including CDH [11, 12], and fetal tracheostomy is gaining 

momentum as a viable treatment option to relieve tracheal obstruction in some fetal 

surgical centers [13]. 

 

The second, as-yet insurmountable, obstacle to survival occurs if insufficient salvageable 

trachea exists to reconstruct a functional airway. Anterior augmentation surgery, for 

example using tracheal donor allografts [14], has been largely superseded by the highly 

successful slide tracheoplasty technique [15, 16], but resections are still limited to 30% of 

the total tracheal length [17]. Stents may be of help in cases of malacia and recurrent 

stenosis, but carry a large inherent morbidity [18]. Nevertheless, existing treatments fail or 

are insufficient in a small proportion of babies who therefore require whole-scale tracheal 

replacement. Tracheal replacement by conventional organ transplantation has generally not 

been possible in the neonatal setting, due to the paucity of appropriate-sized donor organs 

and the generally poor condition of donor tracheae following prolonged end-of-life 

intubation and ventilation [14]. The decision to subject a child to the accompanying lifelong 

immunosuppression with its multiple risks and comorbidities would also not be taken lightly. 

 

Concept of Tissue Engineering 

Tissue engineering unites the fields of cell biology, materials science and engineering 

towards a common goal of creating substitutes to repair, replace or regenerate tissues and 

organs [19]. The basic principle is to create a biocompatible scaffold in which growth of the 

patient’s cells can be encouraged, either by seeding prior to implantation or by subsequent 

recruitment into the scaffold in its in vivo position. The prerequisite for the graft to be free 

from immunogenicity is another key objective of tissue engineering as a personalized 
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therapy, and distinguishes the field from conventional transplantation where 

immunosuppression is required to prevent rejection. 

 

Tissue-engineered trachea could be of particular value in the context of a prenatal tracheal 

diagnosis because an organ replacement could be built to individual fetal dimensions during 

gestation, ready for use in the perinatal or immediate postnatal period (Figure 2). 

 

The trachea was initially considered, perhaps naively, to be a convenient ‘starter organ’ on 

which to concentrate tissue engineering efforts, due to its relatively simple anatomy as a 

hollow air-conduction organ with no moving parts [20]. However, early attempts in animals 

to replace the trachea with simple silicon, Dacron or metal [21, 22] tubes proved disastrous, 

as the trachea occupies a frontline immunological position with the body’s external 

environment. The pseudostratified ciliated epithelium of the proximal airways is highly 

specialized to trap and remove inhaled pathogens and debris, and lack of a functional 

mucociliary escalator post-transplantation is therefore highly problematic. Establishment of 

a blood supply is essential for epithelialization of any graft, but with a finely segmental 

native blood supply in place of a vascular pedicle amenable to anastomosis, bioengineered 

tracheal grafts are relatively slow to establish connections capable of supporting cell growth 

and integration with host tissues. Notwithstanding these issues, tracheal tissue engineering 

raises fewer potential ethical objections as an experimental therapy than in other clinical 

niches, given the total lack of alternative treatment options, and the greater intrinsic 

regenerative potential of pediatric patients compared to adults increases the likelihood of 

success. As such, regenerative approaches in the trachea have outstripped other organs in 

terms of high profile clinical compassionate cases both in adults [23], and in children [24, 25]. 

 

Organ Scaffolds 

Scaffold design, to create a framework on which cells can engraft and differentiate, is a core 

component of tissue engineering. Scaffold constructs provide structural and functional cues 

for the regenerative process and should allow for sustained integration when transplanted. 

An ideal scaffold for airway transplantation would be: 

 inert, non-carcinogenic and non-immunogenic; 
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 biocompatible and capable of promoting cell engraftment, proliferation and 

differentiation; 

 mimic the macroscopic and microscopic architecture of airway region being replaced;  

 mechanically stable and resistant to collapse following transplantation; 

 able to rapidly recapitulate a vascular system; 

 readily available. 

 

More specifically for a neonate or child, the scaffold needs to accommodate significant 

growth and adapt to developmental requirements. A neonatal trachea is typically 5 cm in 

length and 5 mm in diameter and grows 5mm a year to full adult length of approx. 15 cm 

and 20 mm diameter at 16 years of age [26]. The ultimate aim of tissue engineering is to 

create an organ that grows with the child, thereby avoiding multiple surgeries to transplant 

upsized replacements. Integration of the scaffold into the surrounding host tissue by 

remodeling and regeneration (rather than by stenotic scarring) is a final key aim, and is 

particularly pertinent in pediatric airway surgery where serial dilation of stenosis forms a 

large part of the surgical workload. 

 

The optimal scaffold material is still a subject of debate and may vary depending on the 

specific clinical indication [27]. A variety of scaffold materials have been tested for airway 

transplantation which have been traditionally classified into two types, namely those 

derived from native biological material [28]  and those that are wholly synthetic [29]. 

Biological scaffolds are created from native tissues and organs, through a decellularisation 

process whereby resident cells are disrupted and removed using mechanical forces, 

nucleases, and/or detergents in combination or in repeated cycles. The resulting product is a 

bare extracellular matrix framework derived from the original tissue or organ that is devoid 

of the immunogenic cell epitopes normally found in allografts. For the airway, these 

decellularised scaffolds offer a significant advantage over other materials in that they are 

closely biomimetic, retaining both macro- and microscopic architecture. Increasing evidence 

suggests that functional cues are also retained in the form of small molecular proteins within 

both tracheal and lung matrix promoting differentiation of engrafted cells [24, 30, 31]. 
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Whilst the benefits of decellularised tissues and organs are undisputed, these scaffolds are 

dependent on donors; as in adult allotransplantation, the supply of neonatal and pediatric-

sized tissues and organs are also severely limited [32]. Despite those limitations, 

decellularised tissue has lead to clinical translation of tissue engineered airways with worse 

outcome associated to the use of synthetic materials, particularly in pediatrics [33]. 

Alternative donor sources, such as scaffolds derived from xenografts, may be promising 

substitutes [34]; however, this strategy comes with its own hurdles, such as the difficulties of 

ensuring that the xenograft is a suitable anatomical substitute, the potential for zoonotic 

infections, and the possibility for long-term scaffold rejection due to xenospecific epitopes 

[35]. 

 

Synthetic scaffolds may overcome these problems in the future, but current technology 

limits scaffold design being matched for macroscopic features only. Furthermore synthetic 

scaffolds for neonates and children are again limited by the need to accommodate growth 

leading to the necessity of multiple operations. Early work has begun to address this with 

the utilization of biodegradable material to create scaffolds that aim to be completely 

replaced by recipient tissue. Materials developed so far have been shown to be 

biocompatible and were able to support extracellular matrix formation in engineered 

cartilage in an animal model [36, 37]. Future scaffold development may ultimately combine 

the best of both decellularised and synthetic strategies to create composite or hybrid 

constructs.  

 

Other considerations specific for airway tissue engineering applications are the scaffold 

requirements for the anatomical region of interest. The trachea, as a tubular hollow organ 

construct, is often considered a simple structure to recreate; however the remaining parts of 

the airway are infinitely more challenging. The larynx has the added complexity of requiring 

fine motor control for vocal cord function; for a fully functional organ replacement, 

engineering for vocal cord ‘moving parts’, either by surgical reinnervation, or by using soft 

robotic ‘pacing’ implants will be required for voice, swallow and airway protection. 

Nevertheless, initial attempts to engineer laryngeal muscle and cartilage have shown 

promising results. Halum et al implanted synthetic PCL constructs into surgically created 

hemi-larynx defects in rats, and saw that implants seeded with muscle progenitor cells 
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differentiated to express motor end plates demonstrated local neuronal growth and bursts 

of motor unit potentials with a similar firing timing and intensity to the contralateral native 

adductor muscle complex, whilst implants seeded with undifferentiated muscle progenitor 

cells or myotubules did not [38]. Jacobs et al performed laryngotracheal reconstructions in 

rabbits using tissue-engineered cartilage consisting of 1% hyaluronic acid constructs seeded 

with autologous auricular chondrocytes, crosslinked by UV photopolymerisation following 

seeding. Thirteen out of 15 animals receiving such grafts survived to 12 weeks, and the 

tissue-engineered cartilage functioned well with similar epithelialisation, chondrocyte 

survival, mechanical strength and histology to control cartilage [39]. The full-scale phase I/II 

RegenVOX clinical trial to implant autologous stem-cell-seeded decellularised hemilarynges 

are currently in progress in the UK to assess this therapy’s efficacy and safety in adult 

patients with severe acquired laryngotracheal stenosis [27]. 

 

Recellularisation of Bioengineered Airway 

The functionality of tissues in vivo relies heavily upon the presence of a range of 

differentiated cell types. In the airways, chondrocytes populate cartilage to provide 

structural support whilst an epithelial layer lines the luminal surface, allowing clearance via 

the mucociliary escalator [40]. Ideally, tissue-engineered airway transplantation strategies 

should incorporate methods to restore these functions as quickly as possible following 

surgery to minimize the risk of airway collapse or infection [31, 41]. 

 

In the pediatric setting, the use of autologous cells to restore tissue function is of particular 

importance in order to avoid the need for lifelong immunosuppression. However, in fetal or 

neonatal cases, access to autologous tissue to extract these cells poses a challenge. 

Practically, the amniotic fluid represents a source of prenatal cells with great promise. Our 

laboratory and others have shown that stem cells can be isolated from human amniotic fluid 

[42] and that these cells can be reprogrammed to pluripotency, i.e. gain the potential to 

differentiate into all cell lineages [43, 44]. Cells could be isolated prenatally, reprogrammed 

and driven towards the cell lineages of interest for airway bioengineering for application in 

neonatal procedures. The time taken to generate iPSCs and subsequent tissue-specific 

derivatives is considered a major hurdle to translation of these techniques [45] but this may 

be less critical in neonatal procedures where the diagnosis is usually made early in gestation, 
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typically at around 21 weeks, several months before a therapeutic approach is usually 

needed.  

 

IPSC technology continues to improve at a rapid rate but much work remains to improve the 

safety profile of cultured cells for transplantation [46]. A second strategy to generate 

autologous epithelial cells for airway bioengineering from amniotic fluid is to culture cells 

directly. Fetal epithelia, including the respiratory tract, are in contact with amniotic fluid, 

which contains a variety of poorly characterized epithelial cell types [47-49]. Further, 

advances in surgical techniques mean that it is now also possible to obtain tracheal aspirates 

[50], which may contain a higher abundance of respiratory progenitors and would be 

particularly valuable in patients with congenital high airways obstruction syndrome (CHAOS) 

whose obstruction may impede shedding of respiratory cells into the bulk amniotic fluid. 

    

Any strategy reliant upon amniotic fluid as a cell source depends on early prenatal diagnosis 

but in cases presenting postnatally, autologous tissue is more readily accessible. iPSCs 

derived from human dermal fibroblasts differentiate to form both proximal and distal airway 

epithelial cell types under culture conditions which mimic developmental processes [51-55]. 

Given that iPSCs can also generate chondrocytes [56, 57], these may represent an 

opportunity to generate from one original cell, multiple autologous cell types for airway 

transplantation.  

 

Endogenous airway stem cells represent an alternative postnatal cell source. Basal epithelial 

cells are tissue-specific stem cells that regenerate differentiated goblet cells, which produce 

airway mucus, and ciliated cells, which create motile force to move mucus across the 

epithelial surface [58, 59]. Basal epithelial cell cultures can be generated from endobronchial 

biopsies and recent work in our laboratory suggests that under optimized culture conditions 

these can multiply sufficiently in culture for bioengineering applications (Butler et al., in 

press). Currently, bone marrow-derived mesenchymal stromal cells (MSCs) represent the 

predominant source of autologous cartilage for postnatal tissue engineering as a result of 

the limited in vitro expansion potential of chondrocytes [60]. The use of MSCs in tissue-

engineered grafts may also provide beneficial immunomodulatory effects, anti-apoptotic 

effects and/or stimulate ingrowth of the host cells surrounding the graft [61].  
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Conclusions/Perspectives 

Despite considerable logistical and technical obstacles, airway tissue engineering is rapidly 

emerging as a serious potential therapy in adults. The potential for application of this 

technology to the fetal and neonatal population is particularly encouraging, as the ability to 

surgically correct serious airway malformations at an early stage may be able to considerably 

improve survival and surgical outcomes in the area of congenital airway disease.  
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Table 1: Examples of congenital anomalies leading to severe pediatric airway insufficiency. 

  

Anomaly Examples of Conditions 

Congenital High Airway Obstruction 

Syndrome (CHAOS) 

- Laryngeal or tracheal agenesis 

- Laryngeal webs or cysts 

- Congenital neck masses e.g. cystic 

hygromas, teratomas 

Abnormal aerodigestive tract connections - Type IV laryngeal clefts 

-  Tracheo-oesophageal fistulae 

Extrinsic mediastinal compression - Vascular ring or sling 

Stenosis of the trachea and/or bronchi - Complete tracheal rings 

Poor tracheal quality - Tracheomalacia (in isolation or 

downstream of airway stenosis) 
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Figure 1: Severe congenital airway defects A) Laryngeal agenesis viewed at bronchoscopy. B) 

Type IV laryngeal cleft viewed at open repair surgery. 

 

Figure 2: Concept schematic for a fetal/neonatal airway tissue engineering strategy 

 

  



13 
 

References 

[1] Lioy J, Sobol SE. Disorders of the Neonatal Airway. 2015. 
[2] Walker P, Cassey J, O’Callaghan S. Management of antenatally detected fetal airway 
obstruction. International journal of pediatric otorhinolaryngology. 2005;69:805-9. 
[3] Sichel J-Y, Ezra Y, Gomori JM, Eliashar R. Prenatal Magnetic Resonance Imaging of a 
Cervical Lymphangioma for Assessment of the Upper Airway. Annals of Otology, 
Rhinology & Laryngology. 2002;111:464-5. 
[4] Liechty KW. Ex-utero intrapartum therapy.  Seminars in Fetal and Neonatal 
Medicine: Elsevier; 2010. p. 34-9. 
[5] Saadai P, Jelin EB, Nijagal A, Schecter SC, Hirose S, MacKenzie TC, et al. Long-term 
outcomes after fetal therapy for congenital high airway obstructive syndrome. Journal of 
pediatric surgery. 2012;47:1095-100. 
[6] Fokstuen S, Bottani A, Medeiros PF, Antonarakis SE, Stoll C, Schinzel A. Laryngeal 
atresia type III (glottic web) with 22q11. 2 microdeletion: report of three patients. 
American journal of medical genetics. 1997;70:130-3. 
[7] Kanamori Y, Kitano Y, Hashizume K, Sugiyama M, Tomonaga T, Takayasu H, et al. A 
case of laryngeal atresia (congenital high airway obstruction syndrome) with 
chromosome 5p deletion syndrome rescued by ex utero intrapartum treatment. Journal 
of Pediatric surgery. 2004;39:E25-E8. 
[8] Mesens T, Witters I, Van Robaeys J, Peeters H, Fryns J-P. Congenital High Airway 
Obstruction Syndrome (CHAOS) as part of Fraser syndrome: ultrasound and autopsy 
findings. Genetic counseling (Geneva, Switzerland). 2012;24:367-71. 
[9] Hedrick MH, Ferro MM, Filly RA, Flake AW, Harrison MR, Adzick NS. Congenital high 
airway obstruction syndrome (CHAOS): a potential for perinatal intervention. Journal of 
pediatric surgery. 1994;29:271-4. 
[10] Leboulanger N, Garabédian E-N. Laryngo-tracheo-oesophageal clefts. Orphanet J 
Rare Dis. 2011;6:81. 
[11] Deprest J, Gratacos E, Nicolaides K. Fetoscopic tracheal occlusion (FETO) for severe 
congenital diaphragmatic hernia: evolution of a technique and preliminary results. 
Ultrasound in obstetrics & gynecology. 2004;24:121-6. 
[12] Deprest JA, Flake AW, Gratacos E, Ville Y, Hecher K, Nicolaides K, et al. The making 
of fetal surgery. Prenatal diagnosis. 2010;30:653-67. 
[13] Paek BW, Callen PW, Kitterman J, Feldstein VA, Farrell J, Harrison MR, et al. 
Successful fetal intervention for congenital high airway obstruction syndrome. Fetal 
diagnosis and therapy. 2002;17:272-6. 
[14] Jacobs JP, Quintessenza JA, Andrews T, Burke RP, Spektor Z, Delius RE, et al. 
Tracheal allograft reconstruction: the total North American and worldwide pediatric 
experiences. The Annals of thoracic surgery. 1999;68:1043-51. 
[15] Elliott M, Hartley BEJ, Wallis C, Roebuck D. Slide tracheoplasty. Current Opinion in 
Otolaryngology & Head and Neck Surgery. 2008;16:75-82. 
[16] Butler CR, Speggiorin S, Rijnberg FM, Roebuck DJ, Muthialu N, Hewitt RJ, et al. 
Outcomes of slide tracheoplasty in 101 children: a 17-year single-center experience. J 
Thorac Cardiovasc Surg. 2014;147:1783-9. 
[17] Grillo HC. Tracheal replacement: a critical review. The Annals of thoracic surgery. 
2002;73:1995-2004. 
[18] Jacobs JP, Quintessenza JA, Botero LM, van Gelder HM, Giroud JM, Elliott MJ, et al. 
The role of airway stents in the management of pediatric tracheal, carinal, and bronchial 
disease. European journal of cardio-thoracic surgery. 2000;18:505-12. 



14 
 

[19] Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci Transl Med. 
2012;4:160rv12. 
[20] Delaere PR, Van Raemdonck D. The trachea: the first tissue-engineered organ? J 
Thorac Cardiovasc Surg. 2014;147:1128-32. 
[21] Roomans GM. Tissue engineering and the use of stem/progenitor cells for airway 
epithelium repair. Eur Cell Mater. 2010;19:20571996. 
[22] Wykoff TW. A preliminary report on segmental tracheal prosthetic replacement in 
dogs. The Laryngoscope. 1973;83:1072-7. 
[23] Crowley C, Birchall M, Seifalian AM. Trachea transplantation: from laboratory to 
patient. J Tissue Eng Regen Med. 2015;9:357-67. 
[24] Elliott MJ, De Coppi P, Speggiorin S, Roebuck D, Butler CR, Samuel E, et al. Stem-cell-
based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. 
Lancet. 2012;380:994-1000. 
[25] Hamilton NJ, Kanani M, Roebuck DJ, Hewitt RJ, Cetto R, Culme-Seymour EJ, et al. 
Tissue-Engineered Tracheal Replacement in a Child: A 4-Year Follow-Up Study. Am J 
Transplant. 2015;15:2750-7. 
[26] Griscom N, Wohl M. Dimensions of the growing trachea related to age and gender. 
American Journal of Roentgenology. 1986;146:233-7. 
[27] Fishman JM, Lowdell M, Birchall MA. Stem cell-based organ replacements—Airway 
and lung tissue engineering.  Seminars in pediatric surgery: Elsevier; 2014. p. 119-26. 
[28] Badylak SF, Taylor D, Uygun K. Whole-organ tissue engineering: decellularization 
and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng. 
2011;13:27-53. 
[29] Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular 
microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 
2005;23:47-55. 
[30] Ott LM, Weatherly RA, Detamore MS. Overview of tracheal tissue engineering: 
clinical need drives the laboratory approach. Annals of biomedical engineering. 
2011;39:2091-113. 
[31] Weiss DJ, Elliott M, Jang Q, Poole B, Birchall M. Tracheal bioengineering: the next 
steps. Proceeds of an International Society of Cell Therapy Pulmonary Cellular Therapy 
Signature Series Workshop, Paris, France, April 22, 2014. Cytotherapy. 2014;16:1601-
13. 
[32] Wright JC, Barlow AD. The current status of neonatal organ donation in the UK. 
Archives of Disease in Childhood-Fetal and Neonatal Edition. 2015;100:F6-F7. 
[33] Fishman JM, De Coppi P, Elliott MJ, Atala A, Birchall MA, Macchiarini P. Airway 
tissue engineering. Expert opinion on biological therapy. 2011;11:1623-35. 
[34] Zani A, Pierro A, Elvassore N, De Coppi P. Tissue engineering: an option for 
esophageal replacement?  Seminars in pediatric surgery: Elsevier; 2009. p. 57-62. 
[35] Manji RA, Lee W, Cooper DK. Xenograft bioprosthetic heart valves: Past, present 
and future. International Journal of Surgery. 2015. 
[36] Komura M, Komura H, Kanamori Y, Tanaka Y, Ohatani Y, Ishimaru T, et al. Study of 
mechanical properties of engineered cartilage in an in vivo culture for design of a 
biodegradable scaffold. The International journal of artificial organs. 2010;33:775-81. 
[37] Teoh G, Crowley C, Birchall M, Seifalian A. Development of resorbable 
nanocomposite tracheal and bronchial scaffolds for paediatric applications. British 
Journal of Surgery. 2015;102:e140-e50. 



15 
 

[38] Halum SL, Bijangi-Vishehsaraei K, Zhang H, Sowinski J, Bottino MC. Stem Cell–
Derived Tissue–Engineered Constructs for Hemilaryngeal Reconstruction. Annals of 
Otology, Rhinology & Laryngology. 2014;123:124-34. 
[39] Jacobs IN, Redden RA, Goldberg R, Hast M, Salowe R, Mauck RL, et al. Pediatric 
laryngotracheal reconstruction with tissue‐engineered cartilage in a rabbit model. The 
Laryngoscope. 2015. 
[40] Rackley CR, Stripp BR. Building and maintaining the epithelium of the lung. J Clin 
Invest. 2012;122:2724-30. 
[41] Hamilton N, Bullock AJ, Macneil S, Janes SM, Birchall M. Tissue engineering airway 
mucosa: a systematic review. Laryngoscope. 2014;124:961-8. 
[42] De Coppi P, Bartsch G, Jr., Siddiqui MM, Xu T, Santos CC, Perin L, et al. Isolation of 
amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25:100-6. 
[43] Li C, Zhou J, Shi G, Ma Y, Yang Y, Gu J, et al. Pluripotency can be rapidly and 
efficiently induced in human amniotic fluid-derived cells. Hum Mol Genet. 
2009;18:4340-9. 
[44] Liu T, Zou G, Gao Y, Zhao X, Wang H, Huang Q, et al. High efficiency of 
reprogramming CD34(+) cells derived from human amniotic fluid into induced 
pluripotent stem cells with Oct4. Stem Cells Dev. 2012;21:2322-32. 
[45] Neofytou E, O'Brien CG, Couture LA, Wu JC. Hurdles to clinical translation of human 
induced pluripotent stem cells. J Clin Invest. 2015;125:2551-7. 
[46] Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, et al. Somatic 
coding mutations in human induced pluripotent stem cells. Nature. 2011;471:63-7. 
[47] Virtanen I, von Koskull H, Lehto VP, Vartio T, Aula P. Cultured human amniotic fluid 
cells characterized with antibodies against intermediate filaments in indirect 
immunofluorescence microscopy. J Clin Invest. 1981;68:1348-55. 
[48] Ochs BA, Franke WW, Moll R, Grund C, Cremer M, Cremer T. Epithelial character 
and morphologic diversity of cell cultures from human amniotic fluids examined by 
immunofluorescence microscopy and gel electrophoresis of cytoskeletal proteins. 
Differentiation. 1983;24:153-73. 
[49] Regauer S, Franke WW, Virtanen I. Intermediate filament cytoskeleton of amnion 
epithelium and cultured amnion epithelial cells: expression of epidermal cytokeratins in 
cells of a simple epithelium. J Cell Biol. 1985;100:997-1009. 
[50] Pereira-Terra P, Deprest JA, Kholdebarin R, Khoshgoo N, DeKoninck P, Boerema-De 
Munck AA, et al. Unique tracheal fluid microRNA signature predicts response to FETO in 
patients with congenital diaphragmatic hernia. Ann Surg [Epub ahead of print]. 2015. 
[51] Mou H, Zhao R, Sherwood R, Ahfeldt T, Lapey A, Wain J, et al. Generation of 
multipotent lung and airway progenitors from mouse ESCs and patient-specific cystic 
fibrosis iPSCs. Cell Stem Cell. 2012;10:385-97. 
[52] Wong AP, Chin S, Xia S, Garner J, Bear CE, Rossant J. Efficient generation of 
functional CFTR-expressing airway epithelial cells from human pluripotent stem cells. 
Nat Protoc. 2015;10:363-81. 
[53] Wong AP, Bear CE, Chin S, Pasceri P, Thompson TO, Huan LJ, et al. Directed 
differentiation of human pluripotent stem cells into mature airway epithelia expressing 
functional CFTR protein. Nat Biotechnol. 2012;30:876-82. 
[54] Huang SX, Islam MN, O'Neill J, Hu Z, Yang YG, Chen YW, et al. Efficient generation of 
lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol. 
2014;32:84-91. 



16 
 

[55] Firth AL, Dargitz CT, Qualls SJ, Menon T, Wright R, Singer O, et al. Generation of 
multiciliated cells in functional airway epithelia from human induced pluripotent stem 
cells. Proc Natl Acad Sci U S A. 2014;111:E1723-30. 
[56] Inui A, Iwakura T, Reddi AH. Human stem cells and articular cartilage regeneration. 
Cells. 2012;1:994-1009. 
[57] Lee J, Taylor SE, Smeriglio P, Lai J, Maloney WJ, Yang F, et al. Early induction of a 
prechondrogenic population allows efficient generation of stable chondrocytes from 
human induced pluripotent stem cells. FASEB J. 2015;29:3399-410. 
[58] Hogan BL, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CC, et al. Repair and 
regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung 
stem cell function. Cell Stem Cell. 2014;15:123-38. 
[59] Teixeira VH, Nadarajan P, Graham TA, Pipinikas CP, Brown JM, Falzon M, et al. 
Stochastic homeostasis in human airway epithelium is achieved by neutral competition 
of basal cell progenitors. Elife. 2013;2:e00966. 
[60] He X, Fu W, Zheng J. Cell sources for trachea tissue engineering: past, present and 
future. Regen Med. 2012;7:851-63. 
[61] Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: environmentally 
responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45:e54. 
 


