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Abstract

Objective: We examined whether peptide amphiphiles functionalised with adhesive,

migratory or regenerative sequences could be combined with amniotic fluid (AF) to

form plugs that repair fetal membrane (FM) defects after trauma and co-culture with

connexin 43 (Cx43) antisense.

Methods: We assessed interactions between peptide amphiphiles and AF and exam-

ined the plugs in FM defects after trauma and co-culture with the Cx43antisense.

Results: Confocal microscopy confirmed directed self-assembly of peptide amphi-

philes with AF to form a plug within minutes, with good mechanical properties. SEM

of the plug revealed a multi-layered, nanofibrous network that sealed the FM defect

after trauma. Co-culture of the FM defect with Cx43 antisense and plug increased

collagen levels but reduced GAG. Culture of the FM defect with peptide amphiphiles

incorporating regenerative sequences for 5 days, increased F-actin and nuclear cell

contraction, migration and polarization of collagen fibers across the FM defect when

compared to control specimens with minimal repair.

Conclusions: Whilst the nanoarchitecture revealed promising conditions to seal iatro-

genic FM defects, the peptide amphiphiles need to be designed to maximize repair

mechanisms and promote structural compliance with high mechanical tolerance that

maintains tissue remodeling with Cx43 antisense for future treatment.

1 | INTRODUCTION

Strategies to seal and repair defects in the fetal membrane (FM) after

fetal surgery are important to prevent iatrogenic preterm prelabour

rupture of the membranes (PPROM). After open fetal surgery, mem-

branes separate in up to 30% of patients commonly leading to PPROM

and preterm birth.1 Even after fetoscopy which results in trauma, the

membranes do not heal and a visible defect is left in the FM that is

prone to AF leakage and subsequent iatrogenic PPROM.1 The subse-

quent preterm birth compromises the outcome of treatment, reducing

the clinical effectiveness of fetal surgery.2 Currently, there are no clini-

cal solutions to improve healing of the FM after trauma or rupture.

Several novel sealing techniques are aiming to restore a physical

barrier against infection encouraging re-accumulation of AF. The

approaches either (a) seal the FM defect with natural, synthetic or

injectable materials such as plugs, films, sponge, patches, sealants and
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glues or (b) heal the FM defect with therapeutics to induce repair

mechanisms. For example, platelet or fibrin-based strategies, gelatin

or collagen plugs, cyanoacrylate or surgical glues are limited however,

with around 51% to 61% fetal survival rate.3-7 Strategies with collagen

with fibrinogen plugs in the mid-gestational rabbit model, or from por-

cine small intestine and decelullarised human amnion are imperfect.8-10

Many of these approaches suffer from poor adhesion to wet tissues,

mismatch of mechanical properties, rapid swelling or degradation due

to protease activity in the AF, cytotoxicity, and severe iatrogenic com-

plications. Whilst mussel-mimetic tissue adhesives strongly adhere to

elastomeric membranes and demonstrate good adhesion under wet

conditions without swelling, degradation, cytoxicity, it is not known

whether the repaired FM defect could support mechanical loads and

withstand the repetitive effects of mechanical stretch or inflation

applied by a bioreactor device long term.11-14 Interestingly, the ex-vivo

tested mussel glue sealed fetal membranes and resisted pressures

achieved during uterine contractions show promising results.12 Future

developments for sealants or plugs require strong adherence capabili-

ties that maintain mechanical resilience and tissue function long-term.

We and others have shown that targeting connexin 43 (Cx43) with

antisense in stretched, wounded or inflamed tissues improves cell prolif-

eration and migration rates leading to healing mechanisms and wound

closure.15-18 Growth and healing mechanisms can be promoted with AF

derived stem cells supplemented with AF alone or in combination with

alginate, silk or fibroin fibers to heal a variety of tissues.19-22 Peptide

amphiphiles (PAs) conjugated with ligands for cell-adhesion (RGDS),

migratory (GHK), or regenerative (GHK/RGDS) peptides can be assem-

bled with synovial fluid, blood serum, albumin, salts or DNA to generate

nanostructured fibers with spatio-temporal control and tunable function-

alities.23-25 Here we examined in vitro whether combining AF with PA

solutions modified to incorporate sequences that enhance adhesion, cell

migration or regeneration could repair FM defects after trauma.

2 | METHODS

All methods were performed according to the relevant guidelines and

regulations at University College London Hospital and the School of

Engineering and Materials Science, Queen Mary University of

London. Ethical approval for amniotic fluid and fetal membrane sam-

ple collection was granted by the Joint UCL and UCLH Committees

and the Ethics of Human Research Central Office (REC reference:

14/LO/0863). All patients gave written consent to provide AF and

FM tissue samples before procedures were performed.

2.1 | Amniotic fluid collection

The human AF samples were collected from women undergoing

fetoscopic laser ablation of placental vascular anastomoses for treat-

ment of twin-to-twin transfusion syndrome (TTTS) in mid-trimester

pregnancies (n = 6) or fetal surgery for open spina bifida (n = 2) or

amniocentesis for fetal diagnostic genetic testing (n = 1). All fetuses

had a normal karyotype. AF ranged from 16 + 1 to 24 + 0 weeks of

gestation with a maternal age from 27 to 33 years. All AF samples

were immediately stored at −20�C until the experiments could be per-

formed. Each experiment was repeated at least three times with AF

samples collected from a minimum of three separate donors.

2.2 | Fetal membrane collection

Women gave informed consent for term human placentas (n = 12) to

be collected after elective cesarean delivery at University College

London Hospital. Women with placenta praevia, multiple pregnancy,

antepartum hemorrhage, PPROM or small for gestational age were

excluded from the study. The placenta was carefully separated from

the uterus and the FM was rinsed with Earle's Balanced Salt Solution

(EBSS), as described.26 FM were dissected into 25 × 25 mm explants,

washed with EBSS and equilibrated in DMEM +20% FCS for 24 hours.

2.3 | Synthesis and characterization of peptides

The PAs (PAK2, PAK3, PAK4 and PAH3) were synthesized using solid

phase peptide synthesis (SPPS) on a Liberty Blue automated micro-

wave peptide synthesizer (CEM, UK) and characterized by

electrospray ionization mass spectrometry (ESI-MS), as described.27,28

The PAK3 molecules were modified to incorporate the cell-adhesion

peptide arginine-glycine-glutamic acid-serine (RGDS), migratory

(GHK) or regenerative (GHK/RGDS) peptides. Purification of the PAs

were carried out using a 2545 binary gradient HPLC with a 2489

UV/Visible detector on the C18 column (Atlantis Prep OBD T3 Col-

umn, Waters, USA) and a water/acetonitrile (0.1% TFA) gradient. The

What is already known about this topic?

• After fetal surgery, the human fetal membrane shows limited

healing and overexpression of Cx43 at the wound edge.

• The evidence for the sealing and repair of iatrogenic mem-

brane defects and restoration of fetal membrane function

with biomaterials is variable with conflicting data on their abil-

ity to prevent amniotic fluid leakage, infection and rupture.

What does this study add?

• We explored the in vitro molecular assembly of peptide

amphiphiles with human amniotic fluid to potentially seal

and repair defects in the fetal membrane after trauma

and co-culture with the Cx43 antisense.

• We showed that functionalizing the peptide amphiphiles

with bioactive sequences to promote cell adhesion, migration

and regeneration or culturing with Cx43 antisense improves

sealing and the repair of defects in the fetal membrane.
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PA solutions were lyophilized and stored at −20�C (Yield = 85% and

Purity = 95% by HPLC).

2.4 | Early stage PAK3 development using a PDMS
device

A well-established polydimethylsiloxane (PDMS) capillary device was

used to investigate the interactions of the PAK3 solution and the AF

sample during early plug development, as described.29 Human AF

sample (90 μL) was injected into one end of the PDMS device and the

PAK3 solution (10 μL, 2%) was added to the opposite end. The struc-

tural plug formation and interactions at the interface of the PAK3

solution and the AF specimen were examined by light and confocal

microscopy and imaging with time-lapse of the fluorescently labeled

PAK3-TAMRA on an epifluorescence microscope (Leica, DMI 4000B).

2.5 | Treatment of FM defects after trauma

We used an established in vitro FM defect model (Figure 1) to exam-

ine the effects of PAK application after trauma17 A 21 Gauge needle

was used to create a 0.8 mm diameter defect in the FM secured

within the crown insert of a 24 well plate (Figure 1A-C). Human AF

(1 mL) was injected into the well below the FM explant (Figure 1D).

Solutions of the PAK3, PAK3/GHK, PAK3/RGDS or PAK3/GHK/

RGDS (2%) prepared in HEPES buffer (10 mM) with 0.01 M NaCl

(pH 7.4) were applied to the surface of the FM defect and cultured for

up to 5 days with AF replaced every 48 hours (Figure 1E). In separate

experiments, FM defects were cultured with PAK3 alone or in the

presence and absence of 0 or 50 μM Cx43 antisense (Cx43as) for

48 hours. At the end of the experiment, the FM specimens were

either fixed in 4% PFA or stored at −20�C prior to analysis.

2.6 | Electron microscopy

We evaluated the macrostructure of the PAK3 plugs by Scanning Elec-

tron Microscopy (SEM) after early (30 seconds, 2 minutes) and late fixa-

tion (24 hour). After each time point, the PAK3 plugs were fixed in 4%

PFA, washed with Milli-Q water before being passed through a graded

ethanol series (20-100% v/v) and dried to critical point (K850, Quorum

Technologies, UK). Specimens were mounted on 10 mm SEM mounting

blocks and sputter coated with 10 nm gold particles prior to SEM using

an FEI Inspect-F50 (FEI Comp, The Netherlands).

2.7 | Mechanical testing

The mechanical behavior of the PA solutions after assembly with the AF

specimens were measured in situ by dynamic oscillatory rheology using a

Discovery Hybrid Rheometer (Rheo-DHR3, TA Instruments, USA), as

F IGURE 1 In vitro fetal membrane defect model. Fetal membranes (FM) were collected from term placentas from women undergoing
elective cesarean section between 37 and 42 weeks of gestation. The FM was excised into tissue explants (25 × 25 mm) and assembled with the
CellCrown insert (A). A 21 Gauge needle was used to create a 0.8 mm diameter defect in the FM explant (B and C). The FM crown model was
transferred into the well of a tissue culture plate and amniotic fluid (AF) injected into the well (D), to cover the area below the FM explant. The
* indicates AF injection site and + indicates PAK3 application site (E) [Colour figure can be viewed at wileyonlinelibrary.com]
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previously described.30-32 The Storage (G0) and Loss Modulus (G00) of the

resultant plug were assessed for specimens at oscillatory strain rates

(0.1%-100%) and varying time periods (100, 200-400 seconds). In a sep-

arate set of experiments, time sweep measurements were conducted at

constant frequency (1 Hz) whilst strain sweeps were performed from

0.1% to 1000% strain for 3 hours to determine the strain to break value.

2.8 | Biochemical assays

Total glycosaminoglycan (GAG), DNA and collagen content were mea-

sured in papain or pepsin digested samples using the well-established

DMMB, Hoechst and hydroxyproline assays.18,26

2.9 | Cell viability

After PA treatment, FM explants were incubated with calcein AM and

ethidium homodimer (both 5 μM, Invitrogen, Paisley, UK) for

45 minutes at 37�C and were visualized by fluorescence microscopy

using an ×20 objective (Leica, Milton Keynes, UK). Live and dead cells

were imaged from different fields of view of �0.5 mm2 to calculate

the percentage cell viability.

2.10 | Histological analysis

FM explants were fixed in 4% PFA and embedded in paraffin. Sec-

tions (5 μm) were stained with hematoxylin and eosin (H&E), as

described.17

2.11 | IMF confocal microscopy and SHG imaging

Specimens were imaged using two photon confocal imaging on a Leica

SP8 with a Coherent Chameleon Ultra, Ti Sapphire mode locked IR

laser (Leica, Milton Keynes, UK), as described.17 Tissues were stained

with the nuclear dye DAPI (1:1000, Roche) and F-actin Flash

F IGURE 2 Temporal and structural properties of the PAK3 and AF plug. A well-established PDMS channel model was used to investigate the
interaction of the PAK3 solution with the AF sample. Confocal and light microscopy (A), confirmed directed self-assembly of PAK3 solution with the AF
sample to form an interfacial membrane region within 30 seconds (B), 2 minutes (C), 5 minutes (D), and formed a plug that remained stable up to 4 days in
the AF sample (E). Cross-sectional analysis of the PAK3 plug revealed a multi-layered hierarchical structure F, with highly aligned nanofibres on the
surface G, and a randomly arranged network inside the plug H. Higher magnification confirmed an interconnected network of the individual and bundled
nanofibres after early J and K, and late fixation K. Scale bars are indicated by the white lines. All interactions were repeated at least six times with mid-
trimester AF taken from six donors. The AF sample presented in the images was taken from one donor at 19 + 3 weeks of gestation [Colour figure can be
viewed at wileyonlinelibrary.com]
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Phalloidin (1:1000, Merck) and the samples were imaged at excita-

tion/emission wavelengths of 405/460 nm and 495/518 nm, respec-

tively. A transmission detector was used to collect the SHG signal for

collagen with a 430 to 450 nm barrier filter with a pump wavelength

of 880 nm at 80 fs pulse width. A constant step size (Z-section inter-

val) of 1.5 μm was used across all Z-stack images collected. All param-

eters including detector gain, offset and laser power were kept

constant. Images were processed using ImageJ software (64bit), as

described.17

2.12 | Statistical analysis

All values are expressed as the mean and ± SEM. Statistical compari-

sons for the multiple groups were performed using a post hoc

Bonferroni-corrected t-test where values of P < .05 were considered

statistically significant. The number of replicates for each test condi-

tion from separate donors are indicated in the figure legend.

3 | RESULTS

3.1 | Early stage co-assembly of PAK3 with AF

Structural evolution at the interface of the PAK3 solution and AF sam-

ple were investigated using a well-established PDMS channel model

(Figure 2). Time-lapse imaging with confocal and light microscopy con-

firmed rapid directed self-assembly of PAK3 to form a structural inter-

face which occurred within 30 seconds of contact with the AF sample

(Figure 2A,B). After 2 minutes, the membrane continued to grow

toward the PAK3 solution with rapid diffusion of molecules from the

AF sample through the interface and into the PAK3 membrane

(Figure 2C). After 5 minutes, the membrane became denser resulting

in a plug (Supporting information) that remained stable in culture for

up to 4 days (Figure 2E). Cross-sectional analysis of the plug macro-

structure by SEM revealed a multi-layered hierarchical structure

(Figure 1F) with highly aligned nanofibres on the surface (Figure 2G)

and a randomly arranged bundled network inside the plug (Figure 2H).

F IGURE 3 Mechanical properties of the PA plugs. The Storage (G0) and Loss Modulus (G00) of the plugs were examined after co-assembly of
PAK2, PAK3, PAK4, and PAH3 with mid-gestational AF (A and B, respectively). Representative step-strain measurements with applied oscillatory
strain alternating between 0.1% and 100% strain for up to 400 seconds at a constant frequency of 1 Hz (C) and time-dependent dynamic
oscillatory sweep profiles (D). Error bars in A and B represent the mean and SEM values for n = 6 to 15 replicates where ***P < .001. The AF
samples were taken from nine separate donors at 16 + 1 to 24 + 0 weeks of gestation and the measurements in C and D, repeated at least three
times [Colour figure can be viewed at wileyonlinelibrary.com]

BARRETT ET AL. 5

http://wileyonlinelibrary.com


Early and late fixation confirmed an interconnected network of indi-

vidual and bundled nanofibres arranged in random orientations which

increased in density after 30 seconds, 2 minutes and 24 hour

(Figure 2I-K).

3.2 | Mechanical properties of the PA plugs

Time-resolved rheological assessment of the PAK3 plugs were com-

pared with PAK2, PAK4, PAH3 and controls formed with a solution of

PAK3 and PBS only (Figure 3). The Storage Modulus (G0) of the PAK3

plugs had the highest value of 15.8 kPa and was significantly greater

when compared to control values of 0.33 kPa (P < .001; Figure 3A). In

contrast, the PAK4 plugs had the lowest G0 value of 2.55 kPa with

PAK2 and PAH3 having G0 values of 4.95 and 7.38 kPa, respectively

(Figure 3A). A similar profile was found for the Loss Modulus (G00) with

values that were significantly greater for the PAK3 (4.92 kPa) plugs

when compared to the control (0.08 kPa) specimens (P < .001;

Figure 3B). Similar to the G0 values, the G00 values for PAK2, PAK4 and

PAH3 plugs were low and ranged from 0.65 to 1.15 kPa and the

values were broadly similar to controls (Figure 3B).

In separate experiments, we investigated the mechanical behavior

of the PAK3 plug formation (Figure 3C,D). Step-strain rheographs

with applied oscillatory strain alternating between 0.1% and 100%

showed rapid self-recovery of the plug up to 1000 seconds

(Figure 3C). Time sweep measurements at 0.5% strain showed that

the PAK3 plugs attained a G0 value of around 8 kPa from 160 seconds

that could be maintained up to 5000 seconds (Figure 3D).

F IGURE 4 Histological examination and cell viability of the PAK3 plug after sealing. A solution of PAK3 was administered directly over
the fetal membrane (FM) defect after trauma and cultured for 24 hours. After application, closure was examined in cross-sections of the
wounded FM specimens by H&E staining. In the absence of a wound A, the application of PAK3 resulted in a layer of PAK3 (*) on the
surface of the tissue. The defect in the FM could be closed with the PAK3 plug without any obvious damage to the integrity of the tissue
after PAK3 application (B). Inset shows the percentage cell viability of the FM defect after 24 hours culture with the PA plug with
representative confocal images for the effects of PAK2, PAK3, PAK4, and PAH3 compared to controls (DMEM +20% FCS or AF specimen).
Total DNA levels were normalized to dry weight after 24 hours of culture in DMEM +20% FCS and are presented in C, where error bars
represent the mean and SEM values for n = 6 replicates from three donors after elective cesarean section delivery. The cross in B, indicates
the PAK3 application site to the FM defect. Scale bar are indicated by white lines, with regions of higher magnification [Colour figure can be
viewed at wileyonlinelibrary.com]
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3.3 | Effect of PAK3 application to FM defects
after trauma

Histological analysis of H&E stained cross-sections of the FM

showed a thin coating of PAK3 on the side of the amniotic

membrane (AM) surface (Figure 4A). After application of the FM

defect with PAK3, H&E staining revealed a visible plug that formed

through the wound and created a layer either side of the AM or

chorionic membrane (CM) surface (Figure 4B). After 24 hours,

incubation of the FM defect with PAK2, PAK3, or PAH3

F IGURE 5 Electron micrographs of the FM defect after PAK3 application. The FM explants were traumatized with a needle to create a
0.8 mm hole. There is no evidence of healing after 24 hours of culture with AF (A). Application of PAK3 to the FM defect showed sealing at the
edges of the wound (B) and integration of the plug in two regions at higher magnification after 24 hours culture (C and D). Microstructure
analysis revealed integration of the edges of FM defect with the PAK3 nanofibrous network (E and F). Scale bar are indicated by white lines, with
regions of higher magnification (dotted white lines in B) [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 6 The effects of co-culture of FM defects with the Cx43 antisense and/or PAK3 on GAG and collagen content. Control (no hole)
and FM defects were cultured in the presence and absence of 50 μM Cx43 antisense and/or PAK3 for 48 hours. At the end of the experiment,
the tissues and media samples were analysed for GAG (A) and collagen content (B) by biochemical assay. All values represent the mean and SEM
of n = 6 replicates from two separate donors
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maintained cell viability with broadly similar values ranging from

70.1 to 81.3% (inset, Figure 4) compared to AF sample alone or

media controls (78.4% and 92.1%, respectively). In contrast, cell

viability after PAK4 treatment reduced to 43.1% with fluorescence

images showing a greater intensity of non-viable cells. In addition,

PAK4 had the lowest DNA value of 2.2 μg/mg compared to PAK2,

PAK3, PAH3 which had broadly similar values (3.1-3.9 μg/mg) to

the AF alone and media controls (5.1 and 4.99 μg/mg, respectively,

Figure 4C).

3.4 | Microstructure analysis after PAK3
application

Application of the FM defect with PAK3 after 24 hour incubation is

shown in Figure 5. Analysis by SEM showed a visible defect of around

0.8 mm in diameter with no spontaneous migration of cells into the

wound (Figure 5A). Application of the FM defect with PAK3 resulted

in the formation of a plug that appeared to seal the edges of the

wound (Figure 5B). At higher magnification, we observed integration

of the PAK3 plug in two regions of the wound edge (Figure 5C,D).

Microstructure analysis revealed a multi-layer nanofibrous network

with elongated and bundled nanofibres that appeared to interconnect

with the FM (Figure 5E,F).

3.5 | Combined effects of PAK3 and Cx43
antisense

Figure 6 examined the combined effects of the Cx43 antisense on

GAG and collagen levels in control (no defect) and FM defects after

PAK3 application for 48 hours. The levels of GAG were significantly

higher in FM defect (11.4 μg/mg) than controls (6.8 μg/mg; P < .001;

Figure 6A). In the presence of the Cx43 antisense, culture alone or in

combination with PAK3 significantly reduced the levels of GAG from

11.4 to 7.5 μg/mg (P < .001). Co-culture with the antisense and PAK3

marginally reversed this effect with values increasing from 7.5 to

9.4 μg/mg when compared to defects treated with the antisense

alone (P < .05; Figure 6A). In contrast, the levels of collagen were sig-

nificantly lower in the FM defect (29.6 μg/mg) than controls (36.2 μg/

mg, P < .001; Figure 6C). The presence of the Cx43 antisense

reversed this effect with the collagen levels increasing from 29.6 to

36.7 μg/mg. However, co-culture with the antisense and the PAK3

had produced no further effects.

F IGURE 7 IMF confocal microscopy and SHG analysis of the FM defect after in vitro culture with functionalized PAK3. The FM defects were
cultured in the absence (A) or presence of PAK3 molecules (B) modified to incorporate the cell-adhesion (RGDS), migratory (GHK) or regenerative
(GHK/RGDS) peptides (C) and cultured for up to 5 days after trauma. Cells and nuclei were stained with F-Actin (green) or with DAPI (blue),
respectively and SHG imaging of collagen fibers (red). The dotted white lines represent the wound edge (WE) around the FM defect site. All scale
bar are indicated by white lines [Colour figure can be viewed at wileyonlinelibrary.com]
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3.6 | Morphological and structural changes after
application with bioactive PAK3

Figure 7 shows cell morphology and collagen microstructure around

the wound edge of the FM defect after 5 days of culture with PAK3

conjugated to RGDS and/or GHK by IMF confocal microscopy and

SHG imaging. In control specimens, the FM defect showed a visible

wound with no growth of tissue into the defect site after 5 days of

trauma (Figure 7A). In wounded AM and CM, we observed a dense

region of polarized F-actin expressing cells with nuclear contraction

that had migrated toward the edge of the wound. Examination of the

collagen structure by SHG imaging showed the presence of highly

polarized fibers with a greater intensity of the signal close to the

wound edge in the AM compared to the CM. Whilst PAK3 application

after 5 days culture formed a plug around the defect site, we

observed loss of the collagen signal with a disruption of F-actin and

nuclear expressing cells around the edges of the wound and minimal

cell adhesion to the plug surface (Figure 7B).

PAK3 functionalised with GHK showed amniotic epithelial cell

migration toward the wound edge (Top panel, Figure 7C). In the fibro-

blast layer and CM, we observed polarized F-actin cell migration

toward the edges of the wound and the presence of a discrete net-

work of polarized collagen fibers across the defect site (Top panel,

Figure 7C). PAK3 conjugated to RGDS appeared to produce a visible

plug that sealed the defect site but there was no cell migration or col-

lagen signal across the biomaterial (Middle panel, Figure 7C). In con-

trast, FM defects cultured with PAK3-GHK-RGDS showed F-actin

amniotic epithelial cell migration and nuclear contraction toward the

edges of the wound in the epithelial layer with some evidence of col-

lagen fiber formation across the defect site in the fibroblast layer and

in the CM (Bottom panel, Figure 7C). The intensity of the SHG signal

closest to the wound edge and in the defect site was increased in the

fibroblast layer with the presence of nuclear contraction and F-actin

expressing mesenchymal cells (Bottom panel, Figure 7C). In addition,

trophoblast like cells had populated the defect site in the CM with the

presence of polarized collagen along the edges of the wound.

4 | DISCUSSION

The present study explored the in vitro molecular assembly of PAs

with human AF to potentially seal and repair defects in the FM after

trauma. In this study, we chose one sequence (PAK3) for evaluation in

the FM defect model, since this peptide was previously shown to be

effective in promoting cell adhesion, migration and proliferation after

peptide self-assembly with crosslinked nanofibres that did not affect

cytotoxicity and formed plugs with good mechanical properties.28,31,32

We observed strong electrostatic interactions between the positively

charged PAK3 and AF molecules to form a solid membrane at the

PAK3-AF interface when compared to PAK2, PAK4, and PAH3 which

formed soft, liquid or paste-like gels that disintegrated after 6 hours

of culture. However, cell viability and mechanical properties were

dependent on the physical properties of the peptides, with the PAK2

system resulting in a weak plug despite having the highest values for

cell viability (>80%). This is in contrast to PAK3 which mechanically

was more stable but had a reduced cell viability of around 70%. Elec-

tron micrographs and histological analysis showed potentially mor-

phological sealing at the FM defect site revealing interactions

between the self-assembled PAK3 nanofibre and the ECM network.

Importantly, we observed F-actin cell and nuclear contraction, mesen-

chymal cell migration and collagen polarization in the wound edge of

the FM after trauma and these responses were enhanced after culture

with the PAK3/GHK/RGDS plug alone or in combination with PAK3

and the antisense. In particular, the Cx43 antisense promotes tissue

remodeling mechanisms with a reduction in GAG content associated

with an increase collagen. The biochemical changes have the potential

to for greater cross-linking of the collagen network and could maintain

membrane homogeneity and repair in the FM defect. These differ-

ences will affect cellular processes, mechanotransduction and repair.
33,34 We speculate a combination of inflammatory and mechanical fac-

tors could perturb typical mechanotransduction processes mediated

by Cx43 signaling. Cx43 could therefore be a potential therapeutic

target to prevent inflammation and promote tissue remodeling to

repair FM defects.

The PAs were designed to have different charge densities and

hydrophobicity-hydrophilicity balance in order to maximize interaction

with the AF biomolecules, and to obtain plugs with viscoelastic prop-

erties capable of sealing defects. The present study showed spontane-

ous self-assembly of the PAs when in contact with the AF

microenvironment, and revealed a dense mesh of fibers to form a plug

that sealed the FM defect 24 hours after trauma. Whilst the thickness

of the individual and randomly organized nanofibre network appeared

to be in the 80 to 100 nm range, it was difficult to confirm whether

they mimicked the 3D microenvironment found in the extracellular

matrix. Histological and confocal analysis revealed PAK3 formed a

layer either side of the FM defect which had poor integration to the

edges of the wound suggesting limitations with this particular peptide.

In addition, the defect size examined in the present study utilized a

21G needle which created a 0.8 mm defect size that is typical for

amniocentesis and intrauterine transfusion. In contrast, the fetoscopic

procedures are performed with 3 to 5 mm cannula with often the

defect size larger than cannula. The integrity of the PAK3 bonding

properties to seal and repair a larger defect size is not known and war-

rants further investigation. For example, in order to control self-

assembly with tunable mechanical properties for larger defects, future

work will need to improve both the viscous and elastic properties of

the plug in a gradient manner to facilitate adhesion, contraction and

efficient migration of cells responding to both the surface of the

nanofibres and deformation of the material in a size dependent man-

ner.33 This could be achieved with ligands such as RGDs to improve

actin cytoskeletal dynamics and mechanotransduction of cellular cues

and synthesis of structural proteins such as elastin, collagen or fibro-

nectin that will improve mechanical resilience, functionality and matrix

viscosity.34-36

Under the current experimental conditions, the peptide

nanofibrous network is too soft and viscous to facilitate F-actin
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nuclear contraction and surface cell mechanics due to the limited sur-

face stiffness of the material to support the typical purse-string con-

traction mechanism, as previously described.17 In contrast, recent

self-assembling membrane systems were designed to promote protein

conformational changes that guide assembly to form soft biomaterials

or are triggered by fibronectin to form nano sized networks.31,36,37 By

controlling the rate of self-assembly in a spatial and temporal manner,

this process should engineer a gradient of mechanical properties that

influences cell mechanics and drives regeneration. Many soft and hard

tissues contain gradients in composition and this is a mechanism that

should be explored further.

There have been several previous studies that have described the

use of synthetic materials or medical adhesives as promising agents to

seal FM defects. However, the link between Cx43 expression and tis-

sue healing has only recently been established and the results of sea-

ling membranes with biomaterials have been variable.8,10,11 One

difficulty is that there is no ideal in vivo model which allows examina-

tion of the synthetic material in a challenging wet and highly charged

AF microenvironment. Model systems for in vitro performance assess-

ment should be designed to include attachment of the membranes to

the uterine wall since membrane bonding will accomplish greater ten-

sile strength and firm adhesion. Whilst PAs have been previously

shown to be effective in promoting healing properties and regenera-

tion of skin wounds in mice, the peptides could have applications in

improving adhesion, bonding and cell migration in the FM defect to

the uterine wall.38

5 | CONCLUSIONS

The present study investigates novel strategies to seal FM defects

using self-assembly peptides such as PAK3. We show that

functionalizing the PAK3 with bioactive sequences or culturing with

antisense improves sealing and the repair of defects in the

FM. However, the mechanical tolerance, cell mechanics and cytotoxic-

ity of the wound after application of the PAK3-AF system needs to be

improved before clinical translation can be considered with Cx43 anti-

sense. Future biomaterials will need to be examined in vitro with

microfluidic or bioreactor systems that can apply physiological stretch

to the defect after treatment.
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