1,176 research outputs found

    Buried heterostructure vertical-cavity surface-emitting laser with semiconductor mirrors

    Get PDF
    We report a buried heterostructure vertical-cavity surface-emitting laser fabricated by epitaxial regrowth over an InGaAs quantum well gain medium. The regrowth technique enables microscale lateral confinement that preserves a high cavity quality factor (loaded QQ\approx 4000) and eliminates parasitic charging effects found in existing approaches. Under optimal spectral overlap between gain medium and cavity mode (achieved here at TT = 40 K) lasing was obtained with an incident optical power as low as PthP_{\rm th} = 10 mW (λp\lambda_{\rm p} = 808 nm). The laser linewidth was found to be \approx3 GHz at PpP_{\rm p}\approx 5 PthP_{\rm th}

    Quantum dot photonic crystal lasers

    Get PDF
    Coupled cavity designs on two-dimensional square lattice photonic crystal slabs were used to demonstrate optically pumped indium arsenide quantum dot photonic crystal lasers at room temperature. Threshold pump powers of 120 and 370 μW were observed for coupled cavities including two and four defect cavities defined in optimised photonic crystals

    Simulating the effects of wetland loss and inter-annual variability on the fitness of migratory bird species

    Get PDF
    Long-distance migratory shorebirds require wetland stopover sites where they can forage and deposit sufficient fat to complete their migration and, in the spring, reproduce. Conservation biologists are concerned that continental-scale reductions in wetland availability and quality due to human disturbance, climate change, and natural drought events are negatively impacting these species by eliminating critical stopovers along migratory flyways. We describe an individual-based migration model driven by remotely sensed land surface data, climate data assimilation models, and biological field data to examine the impact of changing environmental conditions on migration routes, temporal patterns, and fitness. We used an evolutionary programming approach to evaluate birds’ adaptive responses to variation in refueling potential in the landscape. Birds’ shifted their migratory routes and extended their stopovers as the mean quality of the landscape decreased and spatial variation in refueling potential increased. We discuss possible applications of our model for understanding inter-annual climate variation, climate change, and wetland loss

    Dephasing of a superconducting flux qubit

    Full text link
    In order to gain a better understanding of the origin of decoherence in superconducting flux qubits, we have measured the magnetic field dependence of the characteristic energy relaxation time (T1T_1) and echo phase relaxation time (T2echoT_2^{\rm echo}) near the optimal operating point of a flux qubit. We have measured T2echoT_2^{\rm echo} by means of the phase cycling method. At the optimal point, we found the relation T2echo2T1T_2^{\rm echo}\approx 2T_1. This means that the echo decay time is {\it limited by the energy relaxation} (T1T_1 process). Moving away from the optimal point, we observe a {\it linear} increase of the phase relaxation rate (1/T2echo1/T_{2}^{\rm echo}) with the applied external magnetic flux. This behavior can be well explained by the influence of magnetic flux noise with a 1/f1/f spectrum on the qubit

    Quantum Griffiths phase in CePd(1-x)Rh(x) with x ~ 0.8

    Get PDF
    The magnetic field dependence of the magnetisation (MM) and the temperature dependence of the ac susceptibility (χ=dM/dH\chi' = dM/dH) of CePd(1-x)Rh(x) single crystals with 0.80x0.860.80 \leq x \leq 0.86 are analysed within the frame of the quantum Griffiths phase scenario, which predicts MHλM \propto H^{\lambda} and χTλ1\chi' \propto T^{\lambda-1} with 0λ10 \leq \lambda \leq 1. All MM vs HH and χ\chi' vs TT data follow the predicted power-law behaviour. The parameter λ\lambda, extracted from χ(T)\chi'(T), is very sensitive to the Rh content xx and varies systematically with xx from -0.1 to 0.4. The value of λ\lambda, derived from M(H)M(H) measurements on a \cpr single crystal, seems to be rather constant, λ0.2\lambda \approx 0.2, in a broad range of temperatures between 0.05 and 2 K and fields up to about 10 T. All observed signatures and the λ\lambda values are thus compatible with the quantum Griffiths scenario.Comment: 4 pages, 3 figure

    Space-Based Ornithology - Studying Bird Migration and Environmental Change in North America

    Get PDF
    Natural fluctuations in the availability of critical stopover sites coupled with anthropogenic destruction of wetlands, land-use change, and anticipated losses due to climate change present migratory birds with a formidable challenge. Space based technology in concert with bird migration modeling and geographical information analysis yields new opportunities to shed light on the distribution and movement of organisms on the planet and their sensitivity to human disturbances and environmental changes. At the NASA Goddard Space Flight Center, we are creating ecological forecasting tools for science and application users to address the consequences of loss of wetlands, flooding, drought or other natural disasters such as hurricanes on avian biodiversity and bird migration. We use an individual-based bird biophysical migration model, driven by remotely sensed land surface data, climate and hydrologic data, and biological field observations to study migratory bird responses to environmental change in North America. Simulation allows us to study bird migration across multiple scales and can be linked to mechanistic processes describing the time and energy budget states of migrating birds. We illustrate our approach by simulating the spring migration of pectoral sandpipers from the Gulf of Mexico to Alaska. Mean stopover length and trajectory patterns are consistent with field observations
    corecore