185 research outputs found
3D Array Block Rotation Cipher: An Improvement using lateral shift
This paper on Cipher based on 3D Array Block Rotation is in continuation with our earlier paper titled A cipher based on 3D Array Block Rotation. It discusses a new rotation; lateral shift along with the earlier discussed rotation of the 3D Array block or circular shifting of plates of 3D Array in clockwise direction while enciphering and anticlockwise direction while deciphering. It also discusses the problem of relative bit positioning in the earlier specified algorithm and introduce shift rotations of the blocks as a possible solution to the problem. It uses a key of specified length which can be either transferred with the ciphertext or can be obtained by an agreed upon random bit generator. In all, it is a novel and effective cipher with good randomness property
Intrinsic Reliability improvement in Biaxially Strained SiGe p-MOSFETs
In this letter we not only show improvement in the performance but also in
the reliability of 30nm thick biaxially strained SiGe (20%Ge) channel on Si
p-MOSFETs. Compared to Si channel, strained SiGe channel allows larger hole
mobility ({\mu}h) in the transport direction and alleviates charge flow towards
the gate oxide. {\mu}h enhancement by 40% in SiGe and 100% in Si-cap SiGe is
observed compared to the Si hole universal mobility. A ~40% reduction in NBTI
degradation, gate leakage and flicker noise (1/f) is observed which is
attributed to a 4% increase in the hole-oxide barrier height ({\phi}) in SiGe.
Similar field acceleration factor ({\Gamma}) for threshold voltage shift
({\Delta}VT) and increase in noise ({\Delta}SVG) in Si and SiGe suggests
identical degradation mechanisms.Comment: 4 figures, 3 pages, accepted for publication in IEEE ED
Bioresource management for improvement of soil chemical and biochemical quality in arid environment | Manejo de los biorecursos para el mejoramiento de la calidad química y biológica de los suelos en ambientes áridos
Fauna-induced litter decomposition and associated changes in soil organic carbon (SOC), total soil nitrogen (TSN), soil ammonium nitrogen (SAN), soil nitrate nitrogen (SNN) and soil available phosphorous (SAP), soil respiration (SR) and soil dehydrogenase activity (SDA) were studied in Tecomella undulata (T) tree based silvipature system integrated with
Cenchrus ciliaris (CC) and Lesiurus sindicus (LS) grasses in dry region of India. The litter bag experiment was performed using tree and grass litters. The faunal association was maximum in T+LS litter. Whereas the litter decomposition was maximum in T + CC litter. Thus decomposition was influenced by litter mixtures and associated soil fauna. Faunal
population and litter decomposition were highest inside the canopy of tree at 5 cm depth defining preferred faunal niche. SOC, TSN, SNN, SR and SDA were significantly (P < 0.05) higher in the mixture of tree and grass litters than tree litter alone at all decomposition periods. TSN, SAN, SNN, SAP, SR and SDA were significantly (P < 0.05) higher under the
canopy zone. The higher nutrient enrichment and biochemical activities in the mixture of litters under the tree canopy at 5 cm depth may be due to the mixing and decomposition of greater volume of litters by soil biota. However, SOC was significantly (P < 0.05) higher at surface and minimum at 5 cm depth. It may be due to the loss of carbon as CO2 by higher microbial population at 5 cm. A positive and significant correlation and interaction among litter-associated soil fauna, litter decomposition, soil chemical and biochemical properties clearly demonstrate the importance of soil fauna in organic resource management in dry areas.
Key words: Dry region, soil fauna, litter decomposition, soil nutrients, silvipasture system.
RESUMEN
Se estudiaron la descomposición inducida por la fauna de la hojarasca y los cambios asociados en el carbono orgánico del suelo (COS), nitrógeno total del suelo (NTS), nitrógeno amónico del suelo (NAS), nitrógeno en forma de nitrato del suelo (NNS), fósforo disponible del suelo (FDS), respiración del suelo (RS) y la actividad de la deshidrogenasa del suelo (ADS) en árboldes de Tecomella undulate (T) basado en un sistema silvipasture integrado con las gramíneas Cenchurus cilliaris (CC) y Lesiurus sindicus (LS) en la región seca de la India. El experimento en bolsas con hojarasca se realizó usando hojarascas de arboles y gramíneas. La asociación faunística fue máxima en T + LS, mientras la descomposición de la hojarasca fue máxima en T + CC. Así, la descomposición estuvo influenciada por la calidad de la hojarasca y asociada con la fauna del suelo. La población de la fauna y la descomposición de la hojarasca fueron mayors dentro del dosel del árbol a 5 cm de profundidad definiendo el nicho preferido de la fauna. COS, NTS, NNS, RS y ADS fueron significativamente (
A rare case of unruptured live second trimester ovarian ectopic pregnancy
Ovarian ectopic pregnancy is an extreme rare entity in all the cases of ectopic pregnancies. Before, the end of first trimester, it usually ends with rupture. It is such a unique and rare presentation that only 3% of all ectopic pregnancies are reported due to an ovarian cause. In this case report, authors have presented a patient with ovarian ectopic pregnancy which was found unruptured, live at the second trimester. The patient presented with abdominal pain and after routine check-up and ultrasound abdomen, patient was taken for an emergency explorative laparotomy and the ovarian pregnancy was excised and sent for histopathological examination, the histopathological examination further confirmed the diagnosis of the same. In some researches it has been seen that ovarian pregnancies are rising, considering that, the findings of the report may help frame future diagnostic and treatment guidelines.
Polysaccharides Cellulose, Poly- -1,6-N-Acetyl-D-Glucosamine, and Colanic Acid Are Required for Optimal Binding of Escherichia coli O157:H7 Strains to Alfalfa Sprouts and K-12 Strains to Plastic but Not for Binding to Epithelial Cells
When Escherichia coli O157:H7 bacteria are added to alfalfa sprouts growing in water, the bacteria bind tightly to the sprouts. In contrast, laboratory K-12 strains of E. coli do not bind to sprouts under similar conditions. The roles of E. coli O157:H7 lipopolysaccharide (LPS), capsular polysaccharide, and exopolysaccharides in binding to sprouts were examined. An LPS mutant had no effect on the binding of the pathogenic strain. Cellulose synthase mutants showed a significant reduction in binding; colanic acid mutants were more severely reduced, and binding by poly-β-1,6-N-acetylglucosamine (PGA) mutants was barely detectable. The addition of a plasmid carrying a cellulose synthase gene to K-12 strains allowed them to bind to sprouts. A plasmid carrying the Bps biosynthesis genes had only a marginal effect on the binding of K-12 bacteria. However, the introduction of the same plasmid allowed Sinorhizobium meliloti and a nonbinding mutant of Agrobacterium tumefaciens to bind to tomato root segments. These results suggest that although multiple redundant protein adhesins are involved in the binding of E. coli O157:H7 to sprouts, the polysaccharides required for binding are not redundant and each polysaccharide may play a distinct role. PGA, colanic acid, and cellulose were also required for biofilm formation by a K-12 strain on plastic, but not for the binding of E. coli O157:H7 to mammalian cells
Highlights of the 11th International Bordetella Symposium: From basic biology to vaccine development
Pertussis is a severe respiratory disease caused by infection with the bacterial pathogen Bordetella pertussis. The disease affects individuals of all ages but is particularly severe and sometimes fatal in unvaccinated young infants. Other Bordetella species cause diseases in humans, animals, and birds. Scientific, clinical, public health, vaccine company, and regulatory agency experts on these pathogens and diseases gathered in Buenos Aires, Argentina from 5 to 8 April 2016 for the 11th International Bordetella Symposium to discuss recent advances in our understanding of the biology of these organisms, the diseases they cause, and the development of new vaccines and other strategies to prevent these diseases. Highlights of the meeting included pertussis epidemiology in developing nations, genomic analysis of Bordetella biology and evolution, regulation of virulence factor expression, new model systems to study Bordetella biology and disease, effects of different vaccines on immune responses, maternal immunization as a strategy to prevent newborn disease, and novel vaccine development for pertussis. In addition, the group approved the formation of an International Bordetella Society to promote research and information exchange on bordetellae and to organize future meetings. A new Bordetella.org website will also be developed to facilitate these goals.Instituto de Biotecnologia y Biologia Molecula
Highlights of the 11th International Bordetella Symposium: From basic biology to vaccine development
Pertussis is a severe respiratory disease caused by infection with the bacterial pathogen Bordetella pertussis. The disease affects individuals of all ages but is particularly severe and sometimes fatal in unvaccinated young infants. Other Bordetella species cause diseases in humans, animals, and birds. Scientific, clinical, public health, vaccine company, and regulatory agency experts on these pathogens and diseases gathered in Buenos Aires, Argentina from 5 to 8 April 2016 for the 11th International Bordetella Symposium to discuss recent advances in our understanding of the biology of these organisms, the diseases they cause, and the development of new vaccines and other strategies to prevent these diseases. Highlights of the meeting included pertussis epidemiology in developing nations, genomic analysis of Bordetella biology and evolution, regulation of virulence factor expression, new model systems to study Bordetella biology and disease, effects of different vaccines on immune responses, maternal immunization as a strategy to prevent newborn disease, and novel vaccine development for pertussis. In addition, the group approved the formation of an International Bordetella Society to promote research and information exchange on bordetellae and to organize future meetings. A new Bordetella.org website will also be developed to facilitate these goals.Instituto de Biotecnologia y Biologia Molecula
Genotoxic agents promote the nuclear accumulation of annexin A2: role of annexin A2 in mitigating DNA damage
Annexin A2 is an abundant cellular protein that is mainly localized in the cytoplasm and plasma membrane, however a small population has been found in the nucleus, suggesting a nuclear function for the protein. Annexin A2 possesses a nuclear export sequence (NES) and inhibition of the NES is sufficient to cause nuclear accumulation. Here we show that annexin A2 accumulates in the nucleus in response to genotoxic agents including gamma-radiation, UV radiation, etoposide and chromium VI and that this event is mediated by the nuclear export sequence of annexin A2. Nuclear accumulation of annexin A2 is blocked by the antioxidant agent N-acetyl cysteine (NAC) and stimulated by hydrogen peroxide (H2O2), suggesting that this is a reactive oxygen species dependent event. In response to genotoxic agents, cells depleted of annexin A2 show enhanced phospho-histone H2AX and p53 levels, increased numbers of p53-binding protein 1 nuclear foci and increased levels of nuclear 8-oxo-2'-deoxyguanine, suggesting that annexin A2 plays a role in protecting DNA from damage. This is the first report showing the nuclear translocation of annexin A2 in response to genotoxic agents and its role in mitigating DNA damage.Natural Sciences and Engineering Research Council of Canada (NSERC); European Union [PCOFUND-GA-2009-246542]; Foundation for Science and Technology of Portugal; Beatrice Hunter Cancer Research Institute; Terry Fox Foundationinfo:eu-repo/semantics/publishedVersio
Positive and Negative Regulation of Prostate Stem Cell Antigen Expression by Yin Yang 1 in Prostate Epithelial Cell Lines
Prostate cancer is influenced by epigenetic modification of genes involved in cancer development and progression. Increased expression of Prostate Stem Cell Antigen (PSCA) is correlated with development of malignant human prostate cancer, while studies in mouse models suggest that decreased PSCA levels promote prostate cancer metastasis. These studies suggest that PSCA has context-dependent functions, and could be differentially regulated during tumor progression. In the present study, we identified the multi-functional transcription factor Yin Yang 1 (YY1) as a modulator of PSCA expression in prostate epithelial cell lines. Increased YY1 levels are observed in prostatic intraepithelial neoplasia (PIN) and advanced disease. We show that androgen-mediated up-regulation of PSCA in prostate epithelial cell lines is dependent on YY1. We identified two direct YY1 binding sites within the PSCA promoter, and showed that the upstream site inhibited, while the downstream site, proximal to the androgen-responsive element, stimulated PSCA promoter activity. Thus, changes in PSCA expression levels in prostate cancer may at least partly be affected by cellular levels of YY1. Our results also suggest multiple roles for YY1 in prostate cancer which may contribute to disease progression by modulation of genes such as PSCA
- …