81 research outputs found
T2 Mapping from Super-Resolution-Reconstructed Clinical Fast Spin Echo Magnetic Resonance Acquisitions
Relaxometry studies in preterm and at-term newborns have provided insight into brain microstructure, thus opening new avenues for studying normal brain development and supporting diagnosis in equivocal neurological situations. However, such quantitative techniques require long acquisition times and therefore cannot be straightforwardly translated to in utero brain developmental studies. In clinical fetal brain magnetic resonance imaging routine, 2D low-resolution T2-weighted fast spin echo sequences are used to minimize the effects of unpredictable fetal motion during acquisition. As super-resolution techniques make it possible to reconstruct a 3D high-resolution volume of the fetal brain from clinical low-resolution images, their combination with quantitative acquisition schemes could provide fast and accurate T2 measurements. In this context, the present work demonstrates the feasibility of using super-resolution reconstruction from conventional T2-weighted fast spin echo sequences for 3D isotropic T2 mapping. A quantitative magnetic resonance phantom was imaged using a clinical T2-weighted fast spin echo sequence at variable echo time to allow for super-resolution reconstruction at every echo time and subsequent T2 mapping of samples whose relaxometric properties are close to those of fetal brain tissue. We demonstrate that this approach is highly repeatable, accurate and robust when using six echo times (total acquisition time under 9 minutes) as compared to gold-standard single-echo spin echo sequences (several hours for one single 2D slice)
Target Identification for Stereotactic Thalamotomy Using Diffusion Tractography
BACKGROUND: Stereotactic targets for thalamotomy are usually derived from population-based coordinates. Individual anatomy is used only to scale the coordinates based on the location of some internal guide points. While on conventional MR imaging the thalamic nuclei are indistinguishable, recently it has become possible to identify individual thalamic nuclei using different connectivity profiles, as defined by MR diffusion tractography. METHODOLOGY AND PRINCIPAL FINDINGS: Here we investigated the inter-individual variation of the location of target nuclei for thalamotomy: the putative ventralis oralis posterior (Vop) and the ventral intermedius (Vim) nucleus as defined by probabilistic tractography. We showed that the mean inter-individual distance of the peak Vop location is 7.33 mm and 7.42 mm for Vim. The mean overlap between individual Vop nuclei was 40.2% and it was 31.8% for Vim nuclei. As a proof of concept, we also present a patient who underwent Vop thalamotomy for untreatable tremor caused by traumatic brain injury and another patient who underwent Vim thalamotomy for essential tremor. The probabilistic tractography indicated that the successful tremor control was achieved with lesions in the Vop and Vim respectively. CONCLUSIONS: Our data call attention to the need for a better appreciation of the individual anatomy when planning stereotactic functional neurosurgery
Assessment of Blood Hemodynamics by USPIO-Induced R1 Changes in MRI of Murine Colon Carcinoma
The objective of this study is to assess whether ultrasmall superparamagnetic iron oxide (USPIO)-induced changes of the water proton longitudinal relaxation rate (R1) provide a means to assess blood hemodynamics of tumors. Two types of murine colon tumors (C26a and C38) were investigated prior to and following administration of USPIO blood-pool contrast agent with fast R1 measurements. In a subpopulation of mice, R1 was measured following administration of hydralazine, a well-known blood hemodynamic modifier. USPIO-induced R1 increase in C38 tumors (ΔR1 = 0.072 ± 0.0081 s−1) was significantly larger than in C26a tumors (ΔR1 = 0.032 ± 0.0018 s−1, N = 9, t test, P < 0.001). This was in agreement with the immunohistochemical data that showed higher values of relative vascular area (RVA) in C38 tumors than in C26a tumors (RVA = 0.059 ± 0.015 vs. 0.020 ± 0.011; P < 0.05). Following administration of hydralazine, a decrease in R1 value was observed. This was consistent with the vasoconstriction induced by the steal effect mechanism. In conclusion, R1 changes induced by USPIO are sensitive to tumor vascular morphology and to blood hemodynamics. Thus, R1 measurements following USPIO administration can give novel insight into the effects of blood hemodynamic modifiers, non-invasively and with a high temporal resolution
Organization of high-level visual cortex in human infants
How much of the structure of the human mind and brain is already specified at birth, and how much arises from experience? In this article, we consider the test case of extrastriate visual cortex, where a highly systematic functional organization is present in virtually every normal adult, including regions preferring behaviourally significant stimulus categories, such as faces, bodies, and scenes. Novel methods were developed to scan awake infants with fMRI, while they viewed multiple categories of visual stimuli. Here we report that the visual cortex of 4–6-month-old infants contains regions that respond preferentially to abstract categories (faces and scenes), with a spatial organization similar to adults. However, precise response profiles and patterns of activity across multiple visual categories differ between infants and adults. These results demonstrate that the large-scale organization of category preferences in visual cortex is adult-like within a few months after birth, but is subsequently refined through development.National Science Foundation (U.S.) (CCF-1231216
Modulation of EEG spectral edge frequency during patterned pneumatic oral stimulation in preterm infants
Background—Stimulation of the nervous system plays a central role in brain development and neurodevelopmental outcome. Thalamocortical and corticocortical development is diminished in premature infants and correlated to electroencephalography (EEG) progression. The purpose of this study was to determine the effects of orocutaneous stimulation on the modulation of spectral edge frequency, fc=90% (SEF-90) derived from EEG recordings in preterm infants.
Methods—Twenty two preterm infants were randomized to experimental and control conditions. Pulsed orocutaneous stimulation was presented during gavage feedings begun at around 32 weeks postmenstrual age (PMA). The SEF-90 was derived from 2-channel EEG recordings.
Results—Compared to the control condition, the pulsed orocutaneous stimulation produced a significant reorganization of SEF-90 in the left (p = 0.005) and right (p \u3c 0.0001) hemispheres. Notably, the left and right hemisphere showed a reversal in the polarity of frequency shift, demonstrating hemispheric asymmetry in the frequency domain. Pulsed orocutaneous stimulation also produced a significant pattern of short term cortical adaptation and a long term neural adaptation manifest as a 0.5 Hz elevation in SEF-90 after repeated stimulation sessions.
Conclusion—This is the first study to demonstrate the modulating effects of a servo-controlled oral somatosensory input on the spectral features of EEG activity in preterm infants
White Matter and Cognition in Adults Who Were Born Preterm
BACKGROUND AND PURPOSE: Individuals born very preterm (before 33 weeks of gestation, VPT) are at risk of damage to developing white matter, which may affect later cognition and behaviour. METHODS: We used diffusion tensor MRI (DT-MRI) to assess white matter microstructure (fractional anisotropy; FA) in 80 VPT and 41 term-born individuals (mean age 19.1 years, range 17-22, and 18.5 years, range 17-22 years, respectively). VPT individuals were part of a 1982-1984 birth cohort which had been followed up since birth; term individuals were recruited by local press advertisement. General intellectual function, executive function and memory were assessed. RESULTS: The VPT group had reduced FA in four clusters, and increased FA in four clusters relative to the Term group, involving several association tracts of both hemispheres. Clusters of increased FA were associated with more severe neonatal brain injury in the VPT group. Clusters of reduced FA were associated with lower birth weight and perinatal hypoxia, and with reduced adult cognitive performance in the VPT group only. CONCLUSIONS: Alterations of white matter microstructure persist into adulthood in VPT individuals and are associated with cognitive function
Neural self-representation in autistic women and association with ‘compensatory camouflaging
Prior work has revealed sex/gender-dependent autistic characteristics across behavioural and neural/biological domains. It remains unclear whether and how neural sex/gender differences are related to behavioural sex/gender differences in autism. Here, we examined whether atypical neural responses during mentalizing and self-representation are sex/gender-dependent in autistic adults and explored whether ‘camouflaging’ (acting as if behaviourally neurotypical) is associated with sex/gender-dependent neural responses. In total, N = 119 adults (33 typically developing males, 29 autistic males, 29 typically developing females and 28 autistic females) participated in a task-related functional magnetic resonance imaging paradigm to assess neural activation within right temporo-parietal junction and ventromedial prefrontal cortex during mentalizing and self-representation. Camouflaging in autism was quantified as the discrepancy between extrinsic behaviour in social–interpersonal contexts and intrinsic status. While autistic men showed hypoactive right temporo-parietal junction mentalizing and ventromedial prefrontal cortex self-representation responses compared to typically developing men, such neural responses in autistic women were not different from typically developing women. In autistic women only, increasing camouflaging was associated with heightened ventromedial prefrontal cortex self-representation response. There is a lack of impaired neural self-representation and mentalizing in autistic women compared to typically developing women. Camouflaging is heightened in autistic women and may relate to neural self-representation response. These results reveal brain-behaviour relations that help explain sex/gender-heterogeneity in social brain function in autism
Myelin water imaging reflects clinical variability in multiple sclerosis.
Whilst MRI is routinely used for the assessment and diagnosis of multiple sclerosis, there is poor correspondence between clinical disability in primary progressive multiple sclerosis (PPMS) patients and conventional MRI markers of disease activity (e.g., number of enhancing lesions). As PPMS patients show diffuse and global myelin loss, the aim of this study was to evaluate the efficacy of whole-brain myelin water fraction (MWF) imaging in PPMS. Specifically, we sought to use full-brain analysis techniques to: 1) determine the reproducibility of MWF estimates in PPMS brain; 2) compare MWF values in PPMS brain to healthy controls; and 3) establish the relationship between MWF and clinical disability, regionally and globally throughout the brain. Seventeen PPMS patients and seventeen age-matched controls were imaged using a whole-brain multi-component relaxation imaging technique to measure MWF. Analysis of MWF reduction was performed on three spatial levels: 1) histogram; 2) white matter skeleton; and 3) voxel-wise at the single-subject level. From histogram analysis, PPMS patients had significantly reduced global normal appearing white matter MWF (6%, p=0.04) compared to controls. Focal lesions showed lower MWF values than white matter in controls (61%, p<0.001) and patients (59%, p<0.001). Along the white matter skeleton, MWF was diffusely reduced throughout the PPMS brain, with significant correlations between reduced MWF and increased clinical disability (more severe symptoms), as measured by the Expanded Disability Status Scale, within the corpus callosum and frontal, temporal, parietal and occipital white matter. Correlations with the more specific mental and sensory functional system scores were localized to clinically eloquent locations: reduced MWF was significantly associated with increased mental scores in anterior regions (i.e., frontal lobes and genu of the corpus callosum), and increased sensory scores in more posterior regions closer to the sensory cortex. Individual patient MWF maps were also compared to a normative population atlas, which highlighted areas of statistical difference between the individual patient and the population mean. A significant correlation was found between the volume of significantly reduced MWF and clinical disability (p=0.008, R=0.58). Our results show that clinical disability is reflected in particular regions of cerebral white matter that are consistent between subjects, and illustrates a method to examine tissue alteration throughout the brain of individual patients. These results strongly support the use of MWF imaging to evaluate disease activity in PPMS
- …