51 research outputs found

    Impact of a leptin single nucleotide polymorphism and zilpaterol hydrochloride on growth and carcass characteristics in finishing steers

    Get PDF
    A total of 4,178 steers (mean initial BW = 403.9 ± 16.04 kg) were used to test the interactive effects, if any, of leptin R25C genotypes (CC, CT, or TT) and zilpaterol hydrochloride (ZH) feeding duration on growth performance and carcass traits. Steers were blocked by arrival at the feed yard, genotyped for the leptin SNP, allotted to genotype-specific pens (90 steers/pen), and assigned randomly within genotype and block to 0 or 21 d of dietary ZH. All pens within a block were slaughtered on the same day (132.1 ± 10.9 d on feed). Final BW of steers fed ZH was 6.0 kg heavier (P = 0.008), and ZH-fed steers had greater (P = 0.003) ADG than steers not fed ZH. Feeding ZH decreased DMI in steers with increased frequency of the T allele (9.67, 9.53, and 9.28 kg/d for CC, CT, and TT, respectively), but DMI increased with the frequency of the T allele (9.68, 9.90, and 10.1 kg for CC, CT, and TT, respectively) when ZH was not fed (leptin genotype × ZH, P = 0.011). At the conclusion of the study, ultrasonic fat was greatest for TT steers (11.4 ± 0.28 mm) and least (P = 0.003) for CC steers (11.0 ± 0.25 mm). Regardless of ZH-feeding duration, TT steers produced a greater (P = 0.006) percentage of USDA yield grade (YG) 4 or higher carcasses (5.4 vs. 2.7%) and a lesser (P = 0.006) percentage of YG 1 carcasses (17.7 vs. 26.8%) than CC steers. In addition, ZH-fed steers produced a greater (P \u3c 0.001) percentage of USDA YG 1 carcasses (25.9 vs. 16.2%) and a lesser (P \u3c 0.001) percentage of YG 4 or higher carcasses (1.6 vs. 6.0%) than steers fed the control diet. Marbling scores and the percentage of carcasses grading USDA Choice and Prime were greater in TT than CC steers when fed diets devoid of ZH, but both marbling and quality grades did not differ among leptin genotypes when fed ZH for 21 d (leptin genotype × ZH, P ≤ 0.03). The amount of HCW gain tended to be less (P = 0.095) for steers of the TT genotype (12.7 kg) than either CC (16.3 kg) or CT (17.0 kg) genotypes. Results indicated that leptin R25C genotype impacted most traits associated with fatness whereas feeding ZH for 21 d affected HCW and ADG positively but impacted feed intake, marbling, and USDA quality grades negatively

    Combining Progressive Nodal Release with the Virtual Crack Closure Technique to Model Fatigue Delamination Growth Without Re-Meshing

    Get PDF
    The present work summarizes an approach to model mixed-mode 3D fatigue crack growth using the Virtual Crack Closure Technique (VCCT) without requiring re-meshing. It is demonstrated that the proposed approach can be used to simulate crack shapes that do not conform to the underlying mesh. The proposed approach relies solely on Paris Law characterization data to model delamination growth. Growth is determined as a post-processing step at the end of each increment, and hence no convergence issues associated with the progressive nodal release are encountered. This approach can be readily applied using standard solid element formulations and is implemented via an interface user element in Abaqus/Standard

    Simulating Matrix Crack and Delamination Interaction in a Clamped Tapered Beam

    Get PDF
    Blind predictions were conducted to validate a discrete crack methodology based on the Floating Node Method to simulate matrix-crack/delamination interaction. The main novel aspects of the approach are: (1) the implementation of the floating node method via an 'extended interface element' to represent delaminations, matrix-cracks and their interaction, (2) application of directional cohesive elements to infer overall delamination direction, and (3) use of delamination direction and stress state at the delamination front to determine migration onset. Overall, good agreement was obtained between simulations and experiments. However, the validation exercise revealed the strong dependence of the simulation of matrix-crack/delamination interaction on the strength data (in this case transverse interlaminar strength, YT) used within the cohesive zone approach applied in this work. This strength value, YT, is itself dependent on the test geometry from which the strength measurement is taken. Thus, choosing an appropriate strength value becomes an ad-hoc step. As a consequence, further work is needed to adequately characterize and assess the accuracy and adequacy of cohesive zone approaches to model small crack growth and crack onset. Additionally, often when simulating damage progression with cohesive zone elements, the strength is lowered while keeping the fracture toughness constant to enable the use of coarser meshes. Results from the present study suggest that this approach is not recommended for any problem involving crack initiation, small crack growth or multiple crack interaction

    Impact of a leptin single nucleotide polymorphism and zilpaterol hydrochloride on growth and carcass characteristics in finishing steers

    Get PDF
    A total of 4,178 steers (mean initial BW = 403.9 ± 16.04 kg) were used to test the interactive effects, if any, of leptin R25C genotypes (CC, CT, or TT) and zilpaterol hydrochloride (ZH) feeding duration on growth performance and carcass traits. Steers were blocked by arrival at the feed yard, genotyped for the leptin SNP, allotted to genotype-specific pens (90 steers/pen), and assigned randomly within genotype and block to 0 or 21 d of dietary ZH. All pens within a block were slaughtered on the same day (132.1 ± 10.9 d on feed). Final BW of steers fed ZH was 6.0 kg heavier (P = 0.008), and ZH-fed steers had greater (P = 0.003) ADG than steers not fed ZH. Feeding ZH decreased DMI in steers with increased frequency of the T allele (9.67, 9.53, and 9.28 kg/d for CC, CT, and TT, respectively), but DMI increased with the frequency of the T allele (9.68, 9.90, and 10.1 kg for CC, CT, and TT, respectively) when ZH was not fed (leptin genotype × ZH, P = 0.011). At the conclusion of the study, ultrasonic fat was greatest for TT steers (11.4 ± 0.28 mm) and least (P = 0.003) for CC steers (11.0 ± 0.25 mm). Regardless of ZH-feeding duration, TT steers produced a greater (P = 0.006) percentage of USDA yield grade (YG) 4 or higher carcasses (5.4 vs. 2.7%) and a lesser (P = 0.006) percentage of YG 1 carcasses (17.7 vs. 26.8%) than CC steers. In addition, ZH-fed steers produced a greater (P \u3c 0.001) percentage of USDA YG 1 carcasses (25.9 vs. 16.2%) and a lesser (P \u3c 0.001) percentage of YG 4 or higher carcasses (1.6 vs. 6.0%) than steers fed the control diet. Marbling scores and the percentage of carcasses grading USDA Choice and Prime were greater in TT than CC steers when fed diets devoid of ZH, but both marbling and quality grades did not differ among leptin genotypes when fed ZH for 21 d (leptin genotype × ZH, P ≤ 0.03). The amount of HCW gain tended to be less (P = 0.095) for steers of the TT genotype (12.7 kg) than either CC (16.3 kg) or CT (17.0 kg) genotypes. Results indicated that leptin R25C genotype impacted most traits associated with fatness whereas feeding ZH for 21 d affected HCW and ADG positively but impacted feed intake, marbling, and USDA quality grades negatively

    Growth and Behavior of a Novel Euglena with Environmental Microbes

    No full text
    Euglenids are flagellated, photosynthetic protozoa that synthesize omega-3 and omega-6 fatty acids, making them a potential source for nutritional supplements and biofuel production. We have isolated regional euglenids and selected one for its ability to withstand long-term storage, a characteristic which is unusual among microbes. Nuclear 18S rRNA and chloroplast 16S rRNA sequences suggest a novel species most closely related to E. agilis and model organism E. gracilis. Known as Euglena sp. G12, this organism thrived in storage with a mixed microbial consortium and we reasoned that one or more microbes provided nutrients essential for sustaining G12 growth. To test this, we isolated 10 phenotypically distinct microbes from the G12 storage medium and co-cultured individually or in pair-wise combinations with G12 in a minimal medium. Both G12 and several microbes grew faster when grown together but two bacterial strains also stimulated G12 swimming; spent media likewise stimulated G12 motility. Ultimately, co-culturing Euglena and other species with stabilizing microbes is an attractive alternative to pure culture techniques practiced in many laboratories and culture centers

    Progressive Failure Analysis of Composite Pi Joint

    No full text
    • …
    corecore