224 research outputs found

    Chaperoning junior faculty: Institutional support and guidance can relieve challenges for early-career group leaders and imporove academic performance

    No full text
    The initial excitement of finally leading an independent research group is quickly followed by the realization that it comes with novel challenges. The first day as a principal investigator sets the clock ticking on limited time and opportunities to publish and apply for grants and awards that all are required for tenure or the next job. Expectations are high: PIs must be outstanding scholars who establish their own research program, excel in teaching, and are helpful colleagues and mentors for their students and postdocs. Meeting such high expectations with little experience can cause anxiety and stress. Moreover, we are often our own worst critics; meeting high self‐expectations can be demanding even without external pressure. Based on our experiences as junior faculty, we herewith suggest a set of measures that could help early‐career group leaders to better handle this stress and allow them—and their host institutes—to flourish

    THE EFFECTS OF BLOOD FLOW RESTRICTION ON MEASURES OF GROSS MOTOR COORDINATION DURING THE WINGATE ANAEROBIC TEST

    Get PDF
    To date little research has addressed the impact of blood flow restriction (BFR) training upon gross motor coordination measures (GMCM) during a wide variety of maximal activities. The purpose of this study was to assess the effects of BFR on GMCM exhibited during maximal cycling. The performance of 14 females between the ages of eighteen and thirty-five were analyzed during the Wingate Anaerobic Test (WAnT). The participants completed the test under two conditions, using BFR and without. Results showed statistically significant differences (p ≀ 0.05) between conditions for dependent variables assessed throughout this common 30 second test of maximal cycling. These findings suggest that BFR negatively influenced GMCM exhibited during the WAnT

    BLOOD FLOW RESTRICTION DOES NOT AFFECT ACUTE MEASURES OF POWER AND FATIGUE DURING MAXIMAL CYCLING AMONG WOMEN

    Get PDF
    While it is known that blood flow restriction (BFR) can positively affect training and rehabilitation progression timelines, the physiological basis of this intervention is not fully understood. The purpose of this study was to determine the short-term impact of BFR upon power and fatigue performance measures during maximal cycling. In this study, maximal cycling was assessed using the Wingate Anaerobic Test (WAnT). Using a counterbalanced design, fourteen female participants completed standardized BFR and non-BFR protocols while completing the WAnT. No statistically-significant differences (p ≀ 0.05) were found between conditions for measures of peak power (PP), low power (LP) or fatigue index (FI). These findings suggest that BFR had no statistically-significant acute effect on these performance measures commonly assessed during the WAnT

    N1-acetylspermidine is a determinant of hair follicle stem cell fate

    Get PDF
    Stem cell differentiation is accompanied by increased mRNA translation. The rate of protein biosynthesis is influenced by the polyamines putrescine, spermidine and spermine, which are essential for cell growth and stem cell maintenance. However, the role of polyamines as endogenous effectors of stem cell fate and whether they act through translational control remains obscure. Here, we investigate the function of polyamines in stem cell fate decisions using hair follicle stem cell (HFSC) organoids. Compared to progenitor cells, HFSCs showed lower translation rates, correlating with reduced polyamine levels. Surprisingly, overall polyamine depletion decreased translation but did not affect cell fate. In contrast, specific depletion of natural polyamines mediated by spermidine/spermine N1-acetyltransferase (SSAT; also known as SAT1) activation did not reduce translation but enhanced stemness. These results suggest a translation-independent role of polyamines in cell fate regulation. Indeed, we identified N1-acetylspermidine as a determinant of cell fate that acted through increasing self-renewal, and observed elevated N1-acetylspermidine levels upon depilation-mediated HFSC proliferation and differentiation in vivo. Overall, this study delineates the diverse routes of polyamine metabolism-mediated regulation of stem cell fate decisions. This article has an associated First Person interview with the first author of the paper.Peer reviewe

    Time Delay Lens Modelling Challenge

    Full text link
    In recent years, breakthroughs in methods and data have enabled gravitational time delays to emerge as a very powerful tool to measure the Hubble constant H0H_0. However, published state-of-the-art analyses require of order 1 year of expert investigator time and up to a million hours of computing time per system. Furthermore, as precision improves, it is crucial to identify and mitigate systematic uncertainties. With this time delay lens modelling challenge we aim to assess the level of precision and accuracy of the modelling techniques that are currently fast enough to handle of order 50 lenses, via the blind analysis of simulated datasets. The results in Rung 1 and Rung 2 show that methods that use only the point source positions tend to have lower precision (10−20%10 - 20\%) while remaining accurate. In Rung 2, the methods that exploit the full information of the imaging and kinematic datasets can recover H0H_0 within the target accuracy (∣A∣<2% |A| < 2\%) and precision (<6%< 6\% per system), even in the presence of poorly known point spread function and complex source morphology. A post-unblinding analysis of Rung 3 showed the numerical precision of the ray-traced cosmological simulations to be insufficient to test lens modelling methodology at the percent level, making the results difficult to interpret. A new challenge with improved simulations is needed to make further progress in the investigation of systematic uncertainties. For completeness, we present the Rung 3 results in an appendix, and use them to discuss various approaches to mitigating against similar subtle data generation effects in future blind challenges.Comment: 23 pages, 12 figures, 6 tables, MNRAS accepte

    The economics of debt clearing mechanisms

    Get PDF
    We examine the evolution of decentralized clearinghouse mechanisms from the 13th to the 18th century; in particular, we explore the clearing of non- or limitedtradable debts like bills of exchange. We construct a theoretical model of these clearinghouse mechanisms, similar to the models in the theoretical matching literature, and show that specific decentralized multilateral clearing algorithms known as rescontre, skontrieren or virement des parties used by merchants were efficient in specific historical contexts. We can explain both the evolutionary self-organizing emergence of late medieval and early modern fairs, and its robustness during the 17th and 18th century

    Carotid artery calcification at the initiation of hemodialysis is a risk factor for cardiovascular events in patients with end-stage renal disease: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vascular calcification has been recognized as a risk factor for cardiovascular (CV) events in patients with end-stage renal disease (ESRD). However, the association of carotid artery calcification (CAAC) with CV events remains unknown. The aim of this study was to elucidate whether CAAC is associated with composite CV events in ESRD patients.</p> <p>Methods</p> <p>One-hundred thirty-three patients who had been started on hemodialysis between 2004 and 2008 were included in this retrospective cohort study. These patients received multi-detector computed tomography to assess CAAC at the initiation of hemodialysis. Composite CV events, including ischemic heart disease, heart failure, cerebrovascular diseases, and CV deaths after the initiation of hemodialysis, were examined in each patient.</p> <p>Results</p> <p>CAAC was found in 94 patients (71%). At the end of follow-up, composite CV events were seen in 47 patients: ischemic heart disease in 20, heart failure in 8, cerebrovascular disease in 12, and CV deaths in 7. The incidence of CAAC was 87% in patients with CV events, which was significantly higher than the rate (62%) in those without. Kaplan-Meier analysis showed a significant increase in composite CV events in patients with CAAC compared with those without CAAC (p = 0.001, log-rank test). Univariate analysis using a Cox hazards model showed that age, smoking, common carotid artery intima-media thickness and CAAC were risk factors for composite CV events. In multivariate analysis, only CAAC was a significant risk factor for composite CV events (hazard ratio, 2.85; 95% confidence interval, 1.18-8.00; p = 0.02).</p> <p>Conclusions</p> <p>CAAC is an independent risk factor for CV events in ESRD patients. The assessment of CAAC at the initiation of hemodialysis is useful for predicting the prognosis.</p

    The Two Caenorhabditis elegans UDP-Glucose:Glycoprotein Glucosyltransferase Homologues Have Distinct Biological Functions

    Get PDF
    The UDP-Glc:glycoprotein glucosyltransferase (UGGT) is the sensor of glycoprotein conformations in the glycoprotein folding quality control as it exclusively glucosylates glycoproteins not displaying their native conformations. Monoglucosylated glycoproteins thus formed may interact with the lectin-chaperones calnexin (CNX) and calreticulin (CRT). This interaction prevents premature exit of folding intermediates to the Golgi and enhances folding efficiency. Bioinformatic analysis showed that in C. elegans there are two open reading frames (F48E3.3 and F26H9.8 to be referred as uggt-1 and uggt-2, respectively) coding for UGGT homologues. Expression of both genes in Schizosaccharomyces pombe mutants devoid of UGGT activity showed that uggt-1 codes for an active UGGT protein (CeUGGT-1). On the other hand, uggt-2 coded for a protein (CeUGGT-2) apparently not displaying a canonical UGGT activity. This protein was essential for viability, although cnx/crt null worms were viable. We constructed transgenic worms carrying the uggt-1 promoter linked to the green fluorescent protein (GFP) coding sequence and found that CeUGGT-1 is expressed in cells of the nervous system. uggt-1 is upregulated under ER stress through the ire-1 arm of the unfolded protein response (UPR). Real-time PCR analysis showed that both uggt-1 and uggt-2 genes are expressed during the entire C. elegans life cycle. RNAi-mediated depletion of CeUGGT-1 but not of CeUGGT-2 resulted in a reduced lifespan and that of CeUGGT-1 and CeUGGT-2 in a developmental delay. We found that both CeUGGT1 and CeUGGT2 play a protective role under ER stress conditions, since 10 ”g/ml tunicamycin arrested development at the L2/L3 stage of both uggt-1(RNAi) and uggt-2(RNAi) but not of control worms. Furthermore, we found that the role of CeUGGT-2 but not CeUGGT-1 is significant in relieving low ER stress levels in the absence of the ire-1 unfolding protein response signaling pathway. Our results indicate that both C. elegans UGGT homologues have distinct biological functions
    • 

    corecore