251 research outputs found

    Exploring the cross correlations and autocorrelations of the ULF indices and incorporating the ULF indices into the systems science of the solar wind‐driven magnetosphere

    Full text link
    The ULF magnetospheric indices S gr , S geo , T gr , and T geo are examined and correlated with solar wind variables, geomagnetic indices, and the multispacecraft‐averaged relativistic‐electron flux F in the magnetosphere. The ULF indices are detrended by subtracting off sine waves with 24 h periods to form S grd , S geod , T grd , and T geod . The detrending improves correlations. Autocorrelation‐function analysis indicates that there are still strong 24 h period nonsinusoidal signals in the indices which should be removed in future. Indications are that the ground‐based indices S grd and T grd are more predictable than the geosynchronous indices S geod and T geod . In the analysis, a difference index ∆ S mag  ≈  S grd − 0.693 S geod is derived: the time integral of ∆ S mag has the highest ULF index correlation with the relativistic‐electron flux F . In systems‐science fashion, canonical correlation analysis (CCA) is used to correlate the relativistic‐electron flux simultaneously with the time integrals of (a) the solar wind velocity, (b) the solar wind number density, (c) the level of geomagnetic activity, (d) the ULF indices, and (e) the type of solar wind plasma (coronal hole versus streamer belt): The time integrals of the solar wind density and the type of plasma have the highest correlations with F . To create a solar wind‐Earth system of variables, the two indices S grd and S geod are combined with seven geomagnetic indices; from this, CCA produces a canonical Earth variable that is matched with a canonical solar wind variable. Very high correlations ( r corr  = 0.926) between the two canonical variables are obtained. Key Points ULF indices contain nonsinusoidal periodic signals in universal time ULF indices are not the strongest correlator with radiation belt electron fluxes ULF indices were integrated into a mathematical system science of magnetospherePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108067/1/jgra51050.pd

    Compressional perturbations of the dayside magnetosphere during high‐speed‐stream‐driven geomagnetic storms

    Full text link
    The quasi‐DC compressions of the Earth’s dayside magnetic field by ram‐pressure fluctuations in the solar wind are characterized by using multiple GOES spacecraft in geosynchronous orbit, multiple Los Alamos spacecraft in geosynchronous orbit, global MHD simulations, and ACE and Wind solar wind measurements. Owing to the inward‐outward advection of plasma as the dayside magnetic field is compressed, magnetic field compressions experienced by the plasma in the dayside magnetosphere are greater than the magnetic field compressions measured by a spacecraft. Theoretical calculations indicate that the plasma compression can be a factor of 2 higher than the observed magnetic field compression. The solar wind ram‐pressure changes causing the quasi‐DC magnetospheric compressions are mostly owed to rapid changes in the solar wind number density associated with the crossing of plasma boundaries; an Earth crossing of a plasma boundary produces a sudden change in the dayside magnetic field strength accompanied by a sudden inward or outward motion of the plasma in the dayside magnetosphere. Superposed epoch analysis of high‐speed‐stream‐driven storms was used to explore solar wind compressions and storm time geosynchronous magnetic field compressions, which are of particular interest for the possible contribution to the energization of the outer electron radiation belt. The occurrence distributions of dayside magnetic field compressions, solar wind ram‐pressure changes, and dayside radial plasma flow velocities were investigated: all three quantities approximately obey power law statistics for large values. The approximate power law indices for the distributions of magnetic compressions and ram‐pressure changes were both −3.Key PointsQuasi‐DC compressions of the dayside magnetosphere are responses to solar wind ram‐pressure changesThe plasma compression in the dayside is greater than the field compression measured by a satelliteField compressions, ram‐pressure changes, and flow velocities obey large‐value power law statisticsPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146460/1/jgra52633.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146460/2/jgra52633_am.pd

    Statistically measuring the amount of pitch angle scattering that energetic electrons undergo as they drift across the plasmaspheric drainage plume at geosynchronous orbit

    Full text link
    Using five spacecraft in geosynchronous orbit, plasmaspheric drainage plumes are located in the dayside magnetosphere and the measured pitch angle anisotropies of radiation belt electrons are compared duskward and dawnward of the plumes. Two hundred twenty‐six plume crossings are analyzed. It is found that the radiation belt anisotropy is systematically greater dawnward of plumes (before the electrons cross the plumes) than it is duskward of plumes (after the electrons have crossed the plumes). This change in anisotropy is attributed to pitch angle scattering of the radiation belt electrons during their passage through the plumes. A test database in the absence of plumes finds no equivalent change in the radiation belt anisotropy. The amount of pitch angle scattering by the plume is quantified, scattering times are estimated, and effective pitch angle diffusion coefficients within the plume are estimated. The pitch angle diffusion coefficients obtained from the scattering measurements are of the same magnitude as expected values for electromagnetic ion cyclotron (EMIC) waves at high electron energies (1.5 MeV); however, expected EMIC diffusion coefficients do not extend to pitch angles of 90° and would have difficulties explaining the observed isotropization of electrons. The pitch angle diffusion coefficients obtained from the scattering measurements are of the same magnitude as expected values for whistler mode hiss at lower electron energies (150 keV). Outward radial transport of the radiation belt caused by the pitch angle scattering in the plume is discussed. Key Points Radiation belt pitch angle scattering within the drainage plume is strong The amount of scattering agrees with diffusion coefficients in the literature The pitch angle scattering leads to radial transport of the radiation beltPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106858/1/jgra50883.pd

    A density-temperature description of the outer electron radiation belt during geomagnetic storms

    Get PDF
    Bi-Maxwellian fits are made to energetic-electron flux measurements from seven satellites in geosynchronous orbit, yielding a number density (n) and temperature (T) description of the outer electron radiation belt. For 54.5 spacecraft years of measurements the median value of n is 3.7 × 10−4 cm−3, and the median value of T is 148 keV. General statistical properties of n, T, and the 1.1–1.5 MeV flux F are investigated, including local-time and solar-cycle dependencies. Using superposed-epoch analysis where the zero epoch is convection onset, the evolution of the outer electron radiation belt through high-speed-stream-driven storms is investigated. The number-density decay during the calm before the storm, relativistic-electron dropouts and recoveries, and the heating of the outer electron radiation belt during storms are analyzed. Using four different “triggers” (sudden storm commencement (SSC), southward interplanetary magnetic field (IMF) portions of coronal mass ejection (CME) sheaths, southward-IMF portions of magnetic clouds, and minimum Dst) a selection of CME-driven storms are analyzed with superposed-epoch techniques. For CME-driven storms, only a very modest density decay prior to storm onset is found. In addition, the compression of the outer electron radiation belt at the time of SSC is analyzed, the number-density increase and temperature decrease during storm main phase are characterized, and the increase in density and temperature during storm recovery phase is determined. During the different phases of storms, changes in the flux are sometimes in response to changes in the temperature, sometimes to changes in the number density, and sometimes to changes in both. Differences are found between the density-temperature and flux descriptions, and it is concluded that more information is available using the density-temperature description

    Activation of the Bile Acid Pathway and No Observed Antimicrobial Peptide Sequences in the Skin of a Poison Frog

    Get PDF
    The skin secretions of many frogs have genetically-encoded, endogenous antimicrobial peptides (AMPs). Other species, especially aposematic poison frogs, secrete exogenously derived alkaloids that serve as potent defense molecules. The origins of these defense systems are not clear, but a novel bileacid derived metabolite, tauromantellic acid, was recently discovered and shown to be endogenous in poison frogs (Mantella, Dendrobates, and Epipedobates). These observations raise questions about the evolutionary history of AMP genetic elements, the mechanism and function of tauromatellic acid production, and links between these systems. To understand the diversity and expression of AMPs among frogs, we assembled skin transcriptomes of 13 species across the anuran phylogeny. Our analyses revealed a diversity of AMPs and AMP expression levels across the phylogenetic history of frogs, but no observations of AMPs in Mantella. We examined genes expressed in the bile-acid metabolic pathway and found that CYP7A1 (Cytochrome P450), BAAT (bile acid-CoA: amino acid N-acyltransferase), and AMACR (alphamethylacyl- CoA racemase) were highly expressed in the skin of M. betsileo and either lowly expressed or absent in other frog species. In particular, CYP7A1 catalyzes the first reaction in the cholesterol catabolic pathway and is the rate-limiting step in regulation of bile acid synthesis, suggesting unique activation of the bile acid pathway in Mantella skin. The activation of the bile acid pathway in the skin of Mantella and the lack of observed AMPs fuel new questions about the evolution of defense compounds and the ectopic expression of the bile-acid pathway

    The proton and electron radiation belts at geosynchronous orbit: Statistics and behavior during high‐speed stream‐driven storms

    Full text link
    The outer proton radiation belt (OPRB) and outer electron radiation belt (OERB) at geosynchronous orbit are investigated using a reanalysis of the LANL CPA (Charged Particle Analyzer) 8‐satellite 2‐solar cycle energetic particle data set from 1976 to 1995. Statistics of the OPRB and the OERB are calculated, including local time and solar cycle trends. The number density of the OPRB is about 10 times higher than the OERB, but the 1 MeV proton flux is about 1000 times less than the 1 MeV electron flux because the proton energy spectrum is softer than the electron spectrum. Using a collection of 94 high‐speed stream‐driven storms in 1976–1995, the storm time evolutions of the OPRB and OERB are studied via superposed epoch analysis. The evolution of the OERB shows the familiar sequence (1) prestorm decay of density and flux, (2) early‐storm dropout of density and flux, (3) sudden recovery of density, and (4) steady storm time heating to high fluxes. The evolution of the OPRB shows a sudden enhancement of density and flux early in the storm. The absence of a proton dropout when there is an electron dropout is noted. The sudden recovery of the density of the OERB and the sudden density enhancement of the OPRB are both associated with the occurrence of a substorm during the early stage of the storm when the superdense plasma sheet produces a “strong stretching phase” of the storm. These storm time substorms are seen to inject electrons to 1 MeV and protons to beyond 1 MeV into geosynchronous orbit, directly producing a suddenly enhanced radiation belt population.Key PointsDuring high‐speed stream‐driven storms, the electron and proton radiation belts are directly enhanced by a single substormThe enhancing substorm occurs during the “strong stretching” phase of the storm caused by the superdense plasma sheetProton and electron injection to 1 MeV is seen for these strong stretching phase substormsPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/133567/1/jgra52702.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/133567/2/jgra52702_am.pd

    Rectal Transmission of Transmitted/Founder HIV-1 Is Efficiently Prevented by Topical 1% Tenofovir in BLT Humanized Mice

    Get PDF
    Rectal microbicides are being developed to prevent new HIV infections in both men and women. We focused our in vivo preclinical efficacy study on rectally-applied tenofovir. BLT humanized mice (n = 43) were rectally inoculated with either the primary isolate HIV-1(JRCSF) or the MSM-derived transmitted/founder (T/F) virus HIV-1(THRO) within 30 minutes following treatment with topical 1% tenofovir or vehicle. Under our experimental conditions, in the absence of drug treatment we observed 50% and 60% rectal transmission by HIV-1(JRCSF) and HIV-1(THRO), respectively. Topical tenofovir reduced rectal transmission to 8% (1/12; log rank p = 0.03) for HIV-1(JRCSF) and 0% (0/6; log rank p = 0.02) for HIV-1(THRO). This is the first demonstration that any human T/F HIV-1 rectally infects humanized mice and that transmission of the T/F virus can be efficiently blocked by rectally applied 1% tenofovir. These results obtained in BLT mice, along with recent ex vivo, Phase 1 trial and non-human primate reports, provide a critically important step forward in the development of tenofovir-based rectal microbicides

    Long‐lived plasmaspheric drainage plumes: Where does the plasma come from?

    Full text link
    Long‐lived (weeks) plasmaspheric drainage plumes are explored. The long‐lived plumes occur during long‐lived high‐speed‐stream‐driven storms. Spacecraft in geosynchronous orbit see the plumes as dense plasmaspheric plasma advecting sunward toward the dayside magnetopause. The older plumes have the same densities and local time widths as younger plumes, and like younger plumes they are lumpy in density and they reside in a spatial gap in the electron plasma sheet (in sort of a drainage corridor). Magnetospheric‐convection simulations indicate that drainage from a filled outer plasmasphere can only supply a plume for 1.5–2 days. The question arises for long‐lived plumes (and for any plume older than about 2 days): Where is the plasma coming from? Three candidate sources appear promising: (1) substorm disruption of the nightside plasmasphere which may transport plasmaspheric plasma outward onto open drift orbits, (2) radial transport of plasmaspheric plasma in velocity‐shear‐driven instabilities near the duskside plasmapause, and (3) an anomalously high upflux of cold ionospheric protons from the tongue of ionization in the dayside ionosphere, which may directly supply ionospheric plasma into the plume. In the first two cases the plume is drainage of plasma from the magnetosphere; in the third case it is not. Where the plasma in long‐lived plumes is coming from is a quandary: to fix this dilemma, further work and probably full‐scale simulations are needed. Key Points Plasmaspheric drainage plumes can persist for weeks The source of the plasma supplying the long‐lived plumes is unknown Candidate sources include outflow from the tongue of ionizationPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108632/1/jgra51234.pd
    • …
    corecore