2,640 research outputs found

    Design of aircraft turbine fan drive gear transmission system

    Get PDF
    The following basic types of gear reduction concepts were studied as being feasible power train systems for a low-bypass-ratio, single-spool, geared turbofan engine for general aircraft use: (1) single-stage external-internal reduction, (2) gears (offset shafting), (3) multiple compound idler gear system (concentric shafting), and (4) star gear planetary system with internal ring gear final output member (concentric shafting-counterrotation). In addition, studies were made of taking the accessories drive power off both the high-speed and low-speed shafting, using either face gears or spiral bevel gears. Both antifriction and sleeve-type bearings were considered for the external-internal and star-planet reduction concepts

    Transfer of vertical geodetic control using only one GPS receiver: a case study.

    Get PDF
    Normally, the precise transfer of vertical geodetic control by GPS requires two receivers operating simultaneously in carrier-phase mode. This paper describes the transfer of vertical control into areas that have sparse existing geodetic control using only a single GPS receiver. The GPS data were processed using the Australian Surveying and Land Information Group's (AUSLIG's) AUSPOS on-line GPS processing facility (www.auslig.gov.au/geodesy/sgc/ wwwgps/wwwgps.htm). These GPS-estimated ellipsoidal heights were transformed to the Australian Height Datum (AHD) using AUSGeoid98. In the case study area of Western Australia, a small bias had to be applied to account for the absolute difference between AUSGeoid98 and the AHD before the detailed spirit-levelling traverses, tied to these single-GPS-derived heights, were integrated with a digital elevation model

    Investigation of the Possibility of Using Nuclear Magnetic Spin Alignment

    Get PDF
    The goal of the program to investigate a "Gasdynamic fusion propulsion system for space exploration" is to develop a fusion propulsion system for a manned mission to the planet mars. A study using Deuterium and Tritium atoms are currently in progress. When these atoms under-go fusion, the resulting neutrons and alpha particles are emitted in random directions (isotropically). The probable direction of emission is equal for all directions, thus resulting in wasted energy, massive shielding and cooling requirements, and serious problems with the physics of achieving fusion. If the nuclear magnetic spin moments of the deuterium and tritium nuclei could be precisely aligned at the moment of fusion, the stream of emitted neutrons could be directed out the rear of the spacecraft for thrust and the alpha particles directed forward into an electromagnet ot produce electricity to continue operating the fusion engine. The following supporting topics are discussed: nuclear magnetic moments and spin precession in magnetic field, nuclear spin quantum mechanics, kinematics of nuclear reactions, and angular distribution of particles

    Big bang nucleosynthesis as a probe of fundamental "constants"

    Full text link
    Big Bang nucleosynthesis (BBN) is the earliest sensitive probe of the values of many fundamental particle physics parameters. We have found the leading linear dependences of primordial abundances on all relevant parameters of the standard BBN code, including binding energies and nuclear reaction rates. This enables us to set limits on possible variations of fundamental parameters. We find that 7Li is expected to be significantly more sensitive than other species to many fundamental parameters, a result which also holds for variations of coupling strengths in grand unified (GUT) models. Our work also indicates which areas of nuclear theory need further development if the values of ``constants'' are to be more accurately probed.Comment: Refereed article to be published in Nuclear Physics in Astrophysics III Proceedings, J. Phys. G. Special Issue. Based on work in collaboration with C. Wetterich (Heidelberg). 6 page

    A Time Variation of Proton-Electron Mass Ratio and Grand Unification

    Get PDF
    Astrophysical observations indicate a time variation of the proton-electron mass ratio and of the fine-structure constant. We discuss this phenomenon in models of Grand Unification. In these models a time variation of the fine-structure constant and of the proton mass are expected, if either the unified coupling constant or the scale of unification changes, or both change. We discuss in particular the change of the proton mass. Experiments in Quantum Optics could be done to check these ideas.Comment: 5 page

    Sub-millimeter images of a dusty Kuiper belt around eta Corvi

    Full text link
    We present sub-millimeter and mid-infrared images of the circumstellar disk around the nearby F2V star eta Corvi. The disk is resolved at 850um with a size of ~100AU. At 450um the emission is found to be extended at all position angles, with significant elongation along a position angle of 130+-10deg; at the highest resolution (9.3") this emission is resolved into two peaks which are to within the uncertainties offset symmetrically from the star at 100AU projected separation. Modeling the appearance of emission from a narrow ring in the sub-mm images shows the observed structure cannot be caused by an edge-on or face-on axisymmetric ring; the observations are consistent with a ring of radius 150+-20AU seen at 45+-25deg inclination. More face-on orientations are possible if the dust distribution includes two clumps similar to Vega; we show how such a clumpy structure could arise from the migration over 25Myr of a Neptune mass planet from 80-105AU. The inner 100AU of the system appears relatively empty of sub-mm emitting dust, indicating that this region may have been cleared by the formation of planets, but the disk emission spectrum shows that IRAS detected an additional hot component with a characteristic temperature of 370+-60K (implying a distance of 1-2AU). At 11.9um we found the emission to be unresolved with no background sources which could be contaminating the fluxes measured by IRAS. The age of this star is estimated to be ~1Gyr. It is very unusual for such an old main sequence star to exhibit significant mid-IR emission. The proximity of this source makes it a perfect candidate for further study from optical to mm wavelengths to determine the distribution of its dust.Comment: 22 pages, 4 figures. Scheduled for publication in ApJ 10 February 2005 issu

    Non-thermal leptogenesis via direct inflaton decay without SU(2)(L) triplets

    Full text link
    We present a non-thermal leptogenesis scenario following standard supersymmetric hybrid inflation, in the case where light neutrinos acquire mass via the usual seesaw mechanism and inflaton decay to heavy right-handed neutrino superfields is kinematically disallowed, or the right-handed neutrinos which can be decay products of the inflaton are unable to generate sufficient baryon asymmetry via their subsequent decay. The primordial lepton asymmetry is generated through the decay of the inflaton into light particles by the interference of one-loop diagrams with exchange of different right-handed neutrinos. The mechanism requires superpotential couplings explicitly violating a U(1) R-symmetry and R-parity. We take into account the constraints from neutrino masses and mixing and the preservation of the primordial asymmetry. We consider two models, one without and one with SU(2)(R) gauge symmetry. We show that the former is viable, whereas the latter is ruled out. Although the broken R-parity need not have currently observable low-energy signatures, some R-parity-violating slepton decays may be detectable in the future colliders.Comment: 22 pages including 9 figures, uses Revtex, version to appear in PR

    Slow roll inflation in the presence of a dark energy coupling

    Get PDF
    In models of coupled dark energy, in which a dark energy scalar field couples to other matter components, it is natural to expect a coupling to the inflaton as well. We explore the consequences of such a coupling in the context of single-field slow-roll inflation. Assuming an exponential potential for the quintessence field we show that the coupling to the inflaton causes the quintessence field to be attracted toward the minimum of the effective potential. If the coupling is large enough, the field is heavy and is located at the minimum. We show how this affects the expansion rate and the slow-roll of the inflaton field, and therefore the primordial perturbations generated during inflation. We further show that the coupling has an important impact on the processes of reheating and preheating

    A Mid-Infrared Imaging Survey of Embedded Young Stellar Objects in the Rho Ophiuchi Cloud Core

    Full text link
    Results of a comprehensive, new, ground-based mid-infrared imaging survey of the young stellar population of the Rho Ophiuchi cloud are presented. Data were acquired at the Palomar 5-m and at the Keck 10-m telescopes with the MIRLIN and LWS instruments, at 0.25 arcsec and 0.25 arcsec resolutions, respectively. Of 172 survey objects, 85 were detected. Among the 22 multiple systems observed, 15 were resolved and their individual component fluxes determined. A plot of the frequency distribution of the detected objects with SED spectral slope shows that YSOs spend ~400,000 yr in the Flat Spectrum phase, clearing out their remnant infall envelopes. Mid-infrared variability is found among a significant fraction of the surveyed objects, and is found to occur for all SED classes with optically thick disks. Large-amplitude near-infrared variability, also found for all SED classes with optically thick disks, seems to occur with somewhat higher frequency at the earlier evolutionary stages. Although a general trend of mid-infrared excess and NIR veiling exists proceeding through SED classes, with Class I objects generally exhibiting K-veilings > 1, Flat Spectrum objects with K-veilings > 0.58, and Class III objects with K-veilings =0, Class II objects exhibit the widest range of K-band veiling values, 0-4.5. However, the highly variable value of veiling that a single source can exhibit in any of the SED classes in which active disk accretion can take place is striking, and is direct observational evidence for highly time-variable accretion activity in disks. Finally, by comparing mid-infrared vs. near-infrared excesses in a subsample with well-determined effective temperatures and extinction values, disk clearing mechanisms are explored. The results are consistent with disk clearing proceeding from the inside-out.Comment: 18 pages + 5 tables + 7 figure
    • …
    corecore