31 research outputs found

    Extremity ring dosimetry intercomparison in reference and workplace fields

    Get PDF
    An intercomparison of ring dosemeters has been organised with the aim of assessing the technical capabilities of available extremity dosemeters and focusing on their performance at clinical workplaces with potentially high extremity doses. Twenty-four services from 16 countries participated in the intercomparison. The dosemeters were exposed to reference photon (137Cs) and beta (147Pm, 85Kr and 90Sr/90Y) fields together with fields representing realistic exposure situations in interventional radiology (direct and scattered radiation) and nuclear medicine (99 mTc and 18F). It has been found that most dosemeters provided satisfactory measurements of Hp(0.07) for photon radiation, both in reference and realistic fields. However, only four dosemeters fulfilled the established requirements for all radiation qualities. The main difficulties were found for the measurement of low-energy beta radiation. Finally, the results also showed a general under-response of detectors to 18F, which was attributed to the difficulties of the dosimetric systems to measure the positron contribution to the dos

    Calibration of dosemeters used in mammography with different X ray qualities: Euromet Project No. 526

    Get PDF
    The effect of different X ray radiation qualities on the calibration of mammographic dosemeters was investigated within the framework of a EUROMET (European Collaboration in Measurement Standards) project. The calibration coefficients for two ionization chambers and two semiconductor detectors were established in 13 dosimetry calibration laboratories for radiation qualities used in mammography. They were compared with coefficients for other radiation qualities, including those defined in ISO 4037-1, with first half value layers in the mammographic range. The results indicate that the choice of the radiation quality is not crucial for instruments with a small energy dependence of the response. However, the radiation quality has to be chosen carefully if instruments with a marked dependence of their response to the radiation energy are calibrate

    Extremity ring dosimetry intercomparison in reference and workplace fields

    Get PDF
    An intercomparison of ring dosemeters has been organised with the aim of assessing the technical capabilities of available extremity dosemeters and focusing on their performance at clinical workplaces with potentially high extremity doses. Twenty-four services from 16 countries participated in the intercomparison. The dosemeters were exposed to reference photon ((137)Cs) and beta ((147)Pm, (85)Kr and (90)Sr/(90)Y) fields together with fields representing realistic exposure situations in interventional radiology (direct and scattered radiation) and nuclear medicine ((99 m)Tc and (18)F). It has been found that most dosemeters provided satisfactory measurements of H(p)(0.07) for photon radiation, both in reference and realistic fields. However, only four dosemeters fulfilled the established requirements for all radiation qualities. The main difficulties were found for the measurement of low-energy beta radiation. Finally, the results also showed a general under-response of detectors to (18)F, which was attributed to the difficulties of the dosimetric systems to measure the positron contribution to the dose

    IN-SITU STUDIES OF ELECTROCHEMICAL INTERFACES USING X-RAY RADIATION AT GRAZING ANGLES. APPLICATION TO LIQUID MERCURY

    No full text
    Après un énoncé sommaire des méthodes permettant l'étude in-situ des interfaces électrochimiques au moyen des rayons X, on expose des résultats nouveaux relatifs à la réflexion des rayons X sur la surface du mercure liquide en contact avec sa vapeur ou un gaz inerte et, pour la première fois, en contact avec l'eau ou un électrolyte.After a survey of the in-situ techniques used to probe the structure of electrochemical interfaces, we present new results obtained by specular X-ray reflectivity on the liquid-vapor, the liquid-gas and, for the first time, the liquid-water and liquid-electrolyte interface of mercury

    Electricité statique. ED 874

    No full text

    The LNE-LNHB water calorimeter for primary measurement of absorbed dose at low depth in water: application to medium-energy x-rays

    No full text
    International audienceWater calorimeters are used to establish absorbed dose standards in several national metrology laboratories involved in ionizing radiation dosimetry. These calorimeters have been first used in high-energy photons of (60)Co or accelerator beams, where the depth of measurement in water is large (5 or 10 cm). The LNE-LNHB laboratory has developed a specific calorimeter which makes measurements at low depth in water (down to 0.5 cm) easier, in order to fulfil the reference conditions required by the international dosimetry protocols for medium-energy x-rays. This new calorimeter was first used to measure the absorbed dose rate in water at a depth of 2 cm for six medium-energy x-ray reference beams with a tube potential from 80 to 300 kV. The relative combined standard uncertainty obtained on the absorbed dose rate to water is lower than 0.8%. An overview of the design of the calorimeter is given, followed by a detailed description of the calculation of the correction factors and the calorimetric measurements
    corecore