122 research outputs found

    First application of an axial speed of sound measurement technique in the monitoring of tendon healing

    Get PDF
    PublishedJournal ArticleN/AInstitut National de la Recherche AgronomiqueRe´gion Basse NormandieDirection Ge´ne´rale de l’Enseignement et de la Recherch

    Axial speed of sound for the monitoring of injured equine tendons: a preliminary study.

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tEquine superficial digital flexor tendons (SDFT) are often injured, and they represent an excellent model for human sport tendinopathies. While lesions can be precisely diagnosed by clinical evaluation and ultrasonography, a prognosis is often difficult to establish; the knowledge of the injured tendon's mechanical properties would help in anticipating the outcome. The objectives of the present study were to compare the axial speed of sound (SOS) measured in vivo in normal and injured tendons and to investigate their relationship with the tendons' mechanical parameters, in order to assess the potential of quantitative axial ultrasound to monitor the healing of the injured tendons. SOS was measured in vivo in the right fore SDFTs of 12 horses during walk, before and 3.5 months after the surgical induction of a bilateral core lesion. The 12 horses were then euthanized, their SDFTs isolated and tested in tension to measure their elastic modulus and maximal load (and corresponding stress). SOS significantly decreased from 2179.4 ± 31.4 m/s in normal tendons to 2065.8 ± 67.1 m/s 3.5 months after the surgical induction, and the tendons' elastic modulus (0.90 ± 0.17 GPa) was found lower than what has been reported in normal tendons. While SOS was not correlated to tendon maximal load and corresponding stress, the SOS normalized on its value in normal tendons was correlated to the tendons' elastic modulus. These preliminary results confirm the potential of axial SOS in helping the functional assessment of injured tendon.Direction Générale de l’Enseignement et de la Recherche (French Ministry of Agriculture)Région Basse-NormandieInstitut National de la Recherche AgronomiqueAgence Nationale de la Recherch

    Microcirculation vs. Mitochondria-What to Target?

    Get PDF
    Circulatory shock is associated with marked disturbances of the macro- and microcirculation and flow heterogeneities. Furthermore, a lack of tissue adenosine trisphosphate (ATP) and mitochondrial dysfunction are directly associated with organ failure and poor patient outcome. While it remains unclear if microcirculation-targeted resuscitation strategies can even abolish shock-induced flow heterogeneity, mitochondrial dysfunction and subsequently diminished ATP production could still lead to organ dysfunction and failure even if microcirculatory function is restored or maintained. Preserved mitochondrial function is clearly associated with better patient outcome. This review elucidates the role of the microcirculation and mitochondria during circulatory shock and patient management and will give a viewpoint on the advantages and disadvantages of tailoring resuscitation to microvascular or mitochondrial targets

    Axial speed of sound is related to tendon's nonlinear elasticity.

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tAxial speed of sound (SOS) measurements have been successfully applied to noninvasively evaluate tendon load, while preliminary studies showed that this technique also has a potential clinical interest in the follow up of tendon injuries. The ultrasound propagation theory predicts that the SOS is determined by the effective stiffness, mass density and Poisson's ratio of the propagating medium. Tendon stiffness characterizes the tissue's mechanical quality, but it is often measured in quasi-static condition and for entire tendon segments, so it might not be the same as the effective stiffness which determines the SOS. The objectives of the present study were to investigate the relationship between axial SOS and tendon's nonlinear elasticity, measured in standard laboratory conditions, and to evaluate if tendon's mass density and cross-sectional area (CSA) affect the SOS level. Axial SOS was measured during in vitro cycling of 9 equine superficial digital tendons. Each tendon's stiffness was characterized with a tangent modulus (the continuous derivative of the true stress/true strain curve) and an elastic modulus (the slope of this curve's linear region). Tendon's SOS was found to linearly vary with the square root of the tangent modulus during loading; tendon's SOS level was found correlated to the elastic modulus's square root and inversely correlated to the tendon's CSA, but it was not affected by tendon's mass density. These results confirm that tendon's tangent and elastic moduli, measured in laboratory conditions, are related to axial SOS and they represent one of its primary determinants.Direction Générale de l’Enseignement et de la Recherche (French Ministry of Agriculture)Région Basse-NormandieInstitut National de la Recherche Agronomiqu

    True stress and Poisson's ratio of tendons during loading.

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tExcessive axial tension is very likely involved in the aetiology of tendon lesions, and the most appropriate indicator of tendon stress state is the true stress, the ratio of instantaneous load to instantaneous cross-sectional area (CSA). Difficulties to measure tendon CSA during tension often led to approximate true stress by assuming that CSA is constant during loading (i.e. by the engineering stress) or that tendon is incompressible, implying a Poisson's ratio of 0.5, although these hypotheses have never been tested. The objective of this study was to measure tendon CSA variation during quasi-static tensile loading, in order to assess the true stress to which the tendon is subjected and its Poisson's ratio. Eight equine superficial digital flexor tendons (SDFT, about 30cm long) were tested in tension until failure while the CSA of each tendon was measured in its metacarpal part by means of a linear laser scanner. Axial elongation and load were synchronously recorded during the test. CSA was found to linearly decrease with strain, with a mean decrease at failure of -10.7±2.8% (mean±standard deviation). True stress at failure was 7.1-13.6% higher than engineering stress, while stress estimation under the hypothesis of incompressibility differed from true stress of -6.6 to 2.3%. Average Poisson's ratio was 0.55±0.12 and did not significantly vary with load. From these results on equine SDFT it was demonstrated that tendon in axial quasi-static tension can be considered, at first approximation, as an incompressible material.Direction Générale de l’Enseignement et de la Recherche (French Ministry of Agriculture)Région Basse-NormandieInstitut National de la Recherche Agronomiqu

    Improvement of the chondrocyte-specific phenotype upon equine bone marrow mesenchymal stem cell differentiation. Influence of TGF-ß1 or TGF-ß3, associated with BMP-2 and type I collagen siRNAs

    Get PDF
    International audienceArticular cartilage is a tissue characterized by its poor intrinsic capacity for self-repair. This tissue is frequently altered upon trauma or in osteoarthritis (OA), a degenerative disease that is currently incurable. Consequently, cartilage markers, such as type II collagen, are degraded whereas atypic molecules, such as type I collagen, are newly synthetized. Another essential phenomenon occurring in OA is the upregulation of HtrA1, a serine protease targeting upstream receptors of signalling pathways involved in the synthesis of articular cartilage markers. OA incurs considerable economic loss for the equine sector. In the view to develop new therapies for humans and horses, significant progress in tissue engineering has led to the emergence of new generations of cartilage therapy. Matrix-associated autologous chondrocyte implantation is an advanced 3D cell-based therapy that holds promise for cartilage repair. The aim of this study is to improve the autologous chondrocyte implantation strategy by enhancing the chondrogenic differentiation of mesenchymal stem cells (MSCs) in order to increase the type II collagen/ type I collagen ratio

    Carpal Tunnel Syndrome: A Review of the Recent Literature

    Get PDF
    Carpal Tunnel Syndrome (CTS) remains a puzzling and disabling condition present in 3.8% of the general population. CTS is the most well-known and frequent form of median nerve entrapment, and accounts for 90% of all entrapment neuropathies. This review aims to provide an overview of this common condition, with an emphasis on the pathophysiology involved in CTS. The clinical presentation and risk factors associated with CTS are discussed in this paper. Also, the various methods of diagnosis are explored; including nerve conduction studies, ultrasound, and magnetic resonance imaging

    A Ship ‘for which Great Neptune Raves’: The Sovereign of the Seas, la Couronne and Seventeenth-Century International Competition over Warship Design

    Get PDF
    Charles I’s great warship the Sovereign of the Seas is famed for its design, decoration and importance as a tool that heightened the image of English naval supremacy. By exploring its career, size, name and decoration, this article highlights the Sovereign of the Seas’ significance as a national symbol of political and cultural power. It argues that Charles’s leading warship was developed as a reaction to naval advances and current affairs in Europe. Through a diverse range of evidence including diplomatic correspondence, printed texts and artwork from both English and French institutions, as well as relating this to similar advances in the Netherlands and Sweden, the Sovereign of the Seas’ development is internationally contextualized. By comparing it with other contemporary warships, most importantly la Couronne of France, it is shown that Charles’s flagship was a product of a growing international theatre of maritime activity that was inspired by cultural and political competition, as much as it was by military escalation
    • …
    corecore