48 research outputs found

    Habitat Persistence Underlies Intraspecific Variation in the Dispersal Strategies of Planthoppers

    Get PDF
    Dispersal is considered a vital life history characteristic for insects exploiting temporary habitats, and life history theorists have often hypothesized an inverse relationship between dispersal capability and habitat persistence. Most often, this hypothesis has been tested using interspecific comparisons of dispersal capability and qualitative estimates of habitat persistence. Consequently, most assessments have failed to control for possible phylogenetic nonindependence and they also lack quantitative rigor. We capitalized on existing intraspecific variation on the dispersal capability of Prokelisia planthoppers to examine the relationship between habitat persistence and dispersal, thereby minimizing possible phylogenetic effects. Two congeneric species (Prokelisia marginata and P. dolus) occur in the intertidal marshes of North America, where they feed exclusively on cordgrasses (Spartina). Because these planthoppers exhibit wing dimorphism, flight-capable adults (macropters with fully developed wings). Thus, dispersal capability can be readily estimated by the percentage of macropters in a population. At a regional spatial scale, we found a highly significant negative relationship between dispersal capability (present macroptery) and habitat persistence. In this system, habitat persistence is influenced by a combination of marsh elevation, winter severity, and tidal range, which interact to determine the ability of planthoppers to endure through winter in their primary habitat for development. P. marginata develops primarily in low-marsh habitats during summer, habitats that can be subjected to pronounced winter disturbance due to ice scouring and/or extensive tidal inundation. Levels of winter disturbance of the low marsh are extreme along the Atlantic coast, intermediate along the Pacific, and low along the Gulf. Both the failure of P. marginata populations to remain through winter in the habitat, and the dispersal ability of these populations (92%, 29%, and 17% macroptery, respectively), are correlated with levels of disturbance. Thus, in regions where winter disturbance is high, levels of dispersal are correspondingly high to allow for recolonization of extirpated habitats from overwintering sites on the high marsh. Unlike P. marginata, P. dolus develops primarily in high-marsh habitats, which are much less disturbed on all coasts during winter. Consequently, this species remains year-round in its primary habitat for development, and most populations exhibit relatively low levels of macroptery (\u3c10%). When raised under common garden conditions, many more macropters of both species were produced from Atlantic compared to Gulf populations. Thus the proportion of macropters produced from the populations used in this experiment paralleled the incidence of macroptery measured in the field, providing evidence that the geographic variation in dispersal capability in both species has in part a genetic basis. The results of this study provide strong intraspecific evidence for an inverse relationship between the dispersal capability of insects and the persistence of their habitats

    Bottom-Up Forces Mediate Natural-Enemy Impact in a Phytophagous Insect Community

    Get PDF
    We employed a combination of factorial experiments in the field and laboratory to investigate the relative magnitude and degree of interaction of bottom-up factors (two levels each of host-plant nutrition and vegetation complexity) and top-down forces (two levels of wolf-spider predation) on the population growth of Prokelisia planthoppers (P. dolus and P. marginata), the dominant insect herbivores on Spartina cordgrass throughout the intertidal marshes of North America. Treatments were designed to mimic combinations of plant characteristics and predator densities that occur naturally across habitats in the field. There were complex interactive effects between plant resources and spider predation on the population growth of planthoppers. The degree that spiders suppressed planthoppers depended on both plant nutrition and vegetation complexity, an interaction that was demonstrated both in the field and laboratory. Laboratory results showed that spiders checked planthopper populations most effectively on poor-quality Spartina with an associated matrix of thatch, all characteristics of high-marsh meadow habitats. It was also this combination of plant resources in concert with spiders that promoted the smallest populations of planthoppers in our field experiment. Planthopper populations were most likely to escape the suppressing effects of predation on nutritious plants without thatch, a combination of factors associated with observed planthopper outbreaks in low-marsh habitats in the field. Thus, there is important spatial variation in the relative strength of forces with bottom-up factors dominating under low-marsh conditions and top-down forces increasing in strength at higher elevations on the marsh. Enhancing host-plant biomass and nutrition did not strengthen top-down effects on planthoppers, even though nitrogen-rich plants supported higher densities of wolf spiders and other invertebrate predators in the field. Rather, planthopper populations, particularly those of Prokelisia marginata, escaped predator restraint on high-quality plants, a result we attribute to its mobile life history, enhanced colonizing ability, and rapid growth rate. Thus, our results for Prokelisia planthoppers suggest that the life history strategy of a species is an important mediator of top-down and bottom-up impacts. In laboratory mesocosms, enhancing plant biomass and nutrition resulted in increased spider reproduction, a cascading effect associated with planthopper increases on high-quality plants. Although the adverse effects of spider predation on planthoppers cascaded down and fostered increased plant biomass in laboratory mesocosms, this result did not occur in the field where top-down effects attenuated. We attributed this outcome in part to the intraguild predation of other planthopper predators by wolf spiders. Overall, the general paradigm in this system is for bottom-up forces to dominate, and when predators do exert a significant suppressing effect on planthoppers, their impact is generally legislated by vegetation characteristics

    Physiology and Ecology of Dispersal Polymorphism in Insects

    Get PDF
    Studies of dispersal polymorphism in insects have played a pivotal role in advancing our understanding of population dynamics, life history evolution, and the physiological basis of adaptation. Comparative data on wing-dimorphic insects provide the most definitive evidence to date that habitat persistence selects for reduced dispersal capability. The increased fecundity of flightless females documents that a fitness tradeoff exists between flight capability and reproduction. However, only recently have studies of nutrient consumption and allocation provided unequivocal evidence that this fitness trade-off results from a trade-off of internal resources. Recent studies involving wing-dimorphic insects document that flight capability imposes reproductive penalties in males as well as females. Direct information on hormone titers and their regulation implicates juvenile hormone and ecdysone in the control of wing-morph determination. However, detailed information is available for only one species, and the physiological regulation of wing-morph production remains poorly understood. Establishing a link between the ecological factors that influence dispersal and the proximate physiological mechanisms regulating dispersal ability in the same taxon remains as a key challenge for future research

    Potential for Entomopathogenic Nematodes in Biological Control: A Meta-Analytical Synthesis and Insights from Trophic Cascade Theory

    Get PDF
    Entomopathogenic nematodes (EPN) are ubiquitous and generalized consumers of insects in soil food webs, occurring widely in natural and agricultural ecosystems on six continents. Augmentative releases of EPN have been used to enhance biological control of pests in agroecosystems. Pest managers strive to achieve a trophic cascade whereby natural-enemy effects permeate down through the food web to suppress host herbivores and increase crop production. Although trophic cascades have been studied in diverse aboveground arthropod-based systems, they are infrequently investigated in soil systems. Moreover, no overall quantitative assessment of the effectiveness of EPN in suppressing hosts with cascading benefits to plants has been made. Toward synthesizing the available but limited information on EPN and their ability to suppress prey and affect plant yield, we surveyed the literature and performed a meta-analysis of 35 published studies. Our analysis found that effect sizes for arthropod hosts as a result of EPN addition were consistently negative and indirect effects on plants were consistently positive. Results held across several different host metrics (abundance, fecundity and survival) and across measures of plant performance (biomass, growth, yield and survival). Moreover, the relationship between plant and host effect sizes was strikingly and significantly negative. That is, the positive impact on plant responses generally increased as the negative effect of EPN on hosts intensified, providing strong support for the mechanism of trophic cascades. We also review the ways in which EPN might interact antagonistically with each other and other predators and pathogens to adversely affect host suppression and dampen trophic cascades. We conclude that the food web implications of multiple-enemy interactions involving EPN are little studied, but, as management techniques that promote the long-term persistence of EPN are improved, antagonistic interactions are more likely to arise. We hope that the likely occurrence of antagonistic interactions in soil food webs should stimulate researchers to conduct field experiments explicitly designed to examine multiple-enemy interactions involving EPN and their cascading effects to hosts and plants

    Appendix C. A table showing published cases of plant–herbivore interactions used in the meta-analysis to assess the performance of phytophagous insects on experimentally water-stressed host plants, as well as to assess the effect of water stress on plant nitrogen and leaf water content.

    No full text
    A table showing published cases of plant–herbivore interactions used in the meta-analysis to assess the performance of phytophagous insects on experimentally water-stressed host plants, as well as to assess the effect of water stress on plant nitrogen and leaf water content

    Appendix A. A table showing published cases of plant–herbivore interactions used in the vote-counting analysis to assess the performance of phytophagous insects on experimentally water-stressed host plants.

    No full text
    A table showing published cases of plant–herbivore interactions used in the vote-counting analysis to assess the performance of phytophagous insects on experimentally water-stressed host plants

    Index Files

    No full text
    Index File

    Appendix A. A taxon list of dominant arthropods in different trophic categories analyzed in each habitat type at Alloway Creek restoration site, Salem County, New Jersey, in August 2001.

    No full text
    A taxon list of dominant arthropods in different trophic categories analyzed in each habitat type at Alloway Creek restoration site, Salem County, New Jersey, in August 2001

    Appendix B. Means of 13C and 15N and summary of mixed-model ANOVA for basal resources and arthropod trophic groups analyzed in each habitat type at the Alloway Creek restoration site in August 2001.

    No full text
    Means of 13C and 15N and summary of mixed-model ANOVA for basal resources and arthropod trophic groups analyzed in each habitat type at the Alloway Creek restoration site in August 2001
    corecore