2,145 research outputs found
Role of Nutrition in Alcoholic Liver Disease: Summary of the Symposium at the ESBRA 2017 Congress.
The symposium, "Role of Nutrition in Alcoholic Liver Disease", was held at the European Society for Biomedical Research on Alcoholism Congress on 9 October 2017 in Crete, Greece. The goal of the symposium was to highlight recent advances and developments in the field of alcohol and nutrition. The symposium was focused on experimental and clinical aspects in relation to the role of different types of dietary nutrients and malnutrition in the pathogenesis of alcoholic liver disease (ALD). The following is a summary of key research presented at this session. The speakers discussed the role of dietary fats and carbohydrates in the development and progression of alcohol-induced multi-organ pathology in animal models of ALD, analyzed novel nutrition-related therapeutics (specifically, betaine and zinc) in the treatment of ALD, and addressed clinical relevance of malnutrition and nutrition support in ALD. This summary of the symposium will benefit junior and senior faculty currently investigating alcohol-induced organ pathology as well as undergraduate, graduate, and post-graduate students and fellows
Ethanol-induced Modulation of Hepatocellular Extracellular Signal-regulated Kinase-1/2 Activity via 4-Hydroxynonenal
Modulation of the extracellular signal-regulated kinases (ERK-1/2), a signaling pathway directly associated with cell proliferation, survival, and homeostasis, has been implicated in several pathologies, including alcoholic liver disease. However, the underlying mechanism of ethanol-induced ERK-1/2 modulation remains unknown. This investigation explored the effects of ethanol-associated oxidative stress on constitutive hepatic ERK-1/2 activity and assessed the contribution of the lipid peroxidation product 4-hydroxynonenal (4-HNE) to the observations made in vivo. Constitutive ERK-1/2 phosphorylation was suppressed in hepatocytes isolated from rats chronically consuming ethanol for 45 days. This observation was associated with an increase in 4-HNE-ERK monomer adduct concentration and a hepatic cellular and lobular redistribution of ERK-1/2 that correlated with 4-HNE-protein adduct accumulation. Chronic ethanol consumption was also associated with a decrease in hepatocyte nuclear ELK-1 phosphorylation, independent of changes in total nuclear ELK-1 protein. Primary hepatocytes treated with concentrations of 4-HNE consistent with those occurring during oxidative stress displayed a concentration-dependent decrease in constitutive ERK-1/2 phosphorylation, activity, and nuclear localization that negatively correlated with 4-HNE-ERK-1/2 monomer adduct accumulation. These data paralleled the decreased phosphorylation of the downstream kinase ELK-1. Molar ratios of purified ERK-2 to 4-HNE consistent with pathologic ratios found in vivo resulted in protein monomer-adduct formation across a range of concentrations. Collectively, these data demonstrate a novel association between ethanol-induced lipid peroxidation and the inhibition of constitutive ERK-1/2, and suggest an inhibitory mechanism mediated by the lipid peroxidation product 4-hydroxynonenal
Nonnative Ungulate Impacts on Greater Sage-grouse Late Brood-rearing Habitat in the Great Basin, USA
Domestic livestock grazing is the dominant land use on much of the current range inhabited by greater sage-grouse (Centrocercus urophasianus; sage-grouse) in the western United States. Nonnative feral horses (Equus ferus caballus) also inhabit important sage-grouse seasonal habitats. Overabundant feral horse populations and improper grazing by domestic cattle (Bos taurus) can impact the health of sagebrush (Artemisia spp.) and desert shrub rangeland communities and native wildlife. These impacts to sage-grouse can be exacerbated when they affect late brood-rearing habitat, which provide the forbs and arthropods required to fledge broods. Managers require better information regarding the extent of these impacts. In 2020, we assessed the potential impact of feral horses and domestic cattle on sage-grouse late brood-rearing habitats in western Utah and eastern Nevada, USA. We acquired late brood-rearing location data from sage-grouse marked with global positioning system and very-high frequency radio-transmitters from 2016 to 2020 for North Utah data, 2017 to 2018 for South Utah data, and 1961 to 2017 for both east and west Nevada data to delineate late brood-rearing habitats. Using these location data, we compared 8 sites (4 pairs) within horse and non-horse use areas to assess sage-grouse habitat quality characteristics between areas that have been predominantly horse and cattle grazed versus sites that have been predominantly cattle grazed. For each pairing, 1 site was located within and the other outside of a Bureau of Land Management herd management area boundary, and both sites shared similar habitat characteristics (i.e., topography, dominant vegetation, soils, and climate) and selection probability for broods. We collected vegetation and dung count data at each site to assess characteristics related to habitat quality for sage-grouse brood-rearing, based on ungulate presence. We used a mixed model analysis of variance to detect differences between each paired site comparison (α \u3c 0.01). Horses or evidence of horse presence (i.e., dung) were not detected at our non-horse sites allowing for an unbiased comparison between paired sites. Cattle presence was noted at all our paired sites. Average annual grass frequency was 0.74 in horse and 0.17 in non-horse use areas (P = 0.20), and average annual grass cover was 4.0% compared to 0.2% in horse use areas (P = 0.32). Average annual grass biomass was 0.45 kg/ha in horse and 0.04% in non-horse use areas (P = 0.34). Vegetation height was 44.2 cm in non-horse compared to 34.5 cm in horse use areas (P = 0.23). These results suggest that increased ungulate grazing and year-long use of late brood-rearing habitat by feral horses coupled with livestock grazing may impair habitat suitability, particularly considering ecological impacts from invasive plant species. Our results suggest that managing late brood-rearing habitats to reduce the frequency and intensity of year-long grazing by feral horses can be best accomplished by reducing horse numbers and the seasonal distribution of grazing by domestic livestock
Aberrant post-translational protein modifications in the pathogenesis of alcohol-induced liver injury
It is likely that the majority of proteins will undergo post-translational modification, be it enzymatic or non-enzymatic. These modified protein(s) regulate activity, localization and interaction with other cellular molecules thereby maintaining cellular hemostasis. Alcohol exposure significantly alters several of these post-translational modifications leading to impairments of many essential physiological processes. Here, we present new insights into novel modifications following ethanol exposure and their role in the initiation and progression of liver injury. This critical review condenses the proceedings of a symposium at the European Society for the Biomedical Research on Alcoholism Meeting held September 12-15, 2015, in Valencia, Spain
Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis.
The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis
Liver disease is a significant risk factor for cardiovascular outcomes – A UK Biobank study
Background & Aims: Chronic liver disease (CLD) is associated with increased cardiovascular disease (CVD) risk. We investigated whether early signs of liver disease (measured by iron-corrected T1-mapping [cT1]) were associated with an increased risk of major CVD events. Methods: Liver disease activity (cT1) and fat (proton density fat fraction [PDFF]) were measured using LiverMultiScan® between January 2016 and February 2020 in the UK Biobank imaging sub-study. Using multivariable Cox regression, we explored associations between liver cT1 (MRI) and primary CVD (coronary artery disease, atrial fibrillation [AF], embolism/vascular events, heart failure [HF] and stroke), and CVD hospitalisation and all-cause mortality. Liver blood biomarkers, general metabolism biomarkers, and demographics were also included. Subgroup analysis was conducted in those without metabolic syndrome (defined as at least three of: a large waist, high triglycerides, low high-density lipoprotein cholesterol, increased systolic blood pressure, or elevated haemoglobin A1c). Results: A total of 33,616 participants (mean age 65 years, mean BMI 26 kg/m2, mean haemoglobin A1c 35 mmol/mol) had complete MRI liver data with linked clinical outcomes (median time to major CVD event onset: 1.4 years [range: 0.002-5.1]; follow-up: 2.5 years [range:1.1-5.2]). Liver disease activity (cT1), but not liver fat (PDFF), was associated with higher risk of any major CVD event (hazard ratio 1.14; 95% CI 1.03–1.26; p = 0.008), AF (1.30; 1.12–1.51; p <0.001); HF (1.30; 1.09–1.56; p = 0.004); CVD hospitalisation (1.27; 1.18-1.37; p <0.001) and all-cause mortality (1.19; 1.02–1.38; p = 0.026). FIB-4 index was associated with HF (1.06; 1.01–1.10; p = 0.007). Risk of CVD hospitalisation was independently associated with cT1 in individuals without metabolic syndrome (1.26; 1.13-1.4; p <0.001). Conclusion: Liver disease activity, by cT1, was independently associated with a higher risk of incident CVD and all-cause mortality, independent of pre-existing metabolic syndrome, liver fibrosis or fat. Impact and implications: Chronic liver disease (CLD) is associated with a twofold greater incidence of cardiovascular disease. Our work shows that early liver disease on iron-corrected T1 mapping was associated with a higher risk of major cardiovascular disease (14%), cardiovascular disease hospitalisation (27%) and all-cause mortality (19%). These findings highlight the prognostic relevance of a comprehensive evaluation of liver health in populations at risk of CVD and/or CLD, even in the absence of clinical manifestations or metabolic syndrome, when there is an opportunity to modify/address risk factors and prevent disease progression. As such, they are relevant to patients, carers, clinicians, and policymakers
Cerebellar c9RAN proteins associate with clinical and neuropathological characteristics of C9ORF72 repeat expansion carriers.
Clinical and neuropathological characteristics associated with G4C2 repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, are highly variable. To gain insight on the molecular basis for the heterogeneity among C9ORF72 mutation carriers, we evaluated associations between features of disease and levels of two abundantly expressed "c9RAN proteins" produced by repeat-associated non-ATG (RAN) translation of the expanded repeat. For these studies, we took a departure from traditional immunohistochemical approaches and instead employed immunoassays to quantitatively measure poly(GP) and poly(GA) levels in cerebellum, frontal cortex, motor cortex, and/or hippocampus from 55 C9ORF72 mutation carriers [12 patients with ALS, 24 with frontotemporal lobar degeneration (FTLD) and 19 with FTLD with motor neuron disease (FTLD-MND)]. We additionally investigated associations between levels of poly(GP) or poly(GA) and cognitive impairment in 15 C9ORF72 ALS patients for whom neuropsychological data were available. Among the neuroanatomical regions investigated, poly(GP) levels were highest in the cerebellum. In this same region, associations between poly(GP) and both neuropathological and clinical features were detected. Specifically, cerebellar poly(GP) levels were significantly lower in patients with ALS compared to patients with FTLD or FTLD-MND. Furthermore, cerebellar poly(GP) associated with cognitive score in our cohort of 15 patients. In the cerebellum, poly(GA) levels similarly trended lower in the ALS subgroup compared to FTLD or FTLD-MND subgroups, but no association between cerebellar poly(GA) and cognitive score was detected. Both cerebellar poly(GP) and poly(GA) associated with C9ORF72 variant 3 mRNA expression, but not variant 1 expression, repeat size, disease onset, or survival after onset. Overall, these data indicate that cerebellar abnormalities, as evidenced by poly(GP) accumulation, associate with neuropathological and clinical phenotypes, in particular cognitive impairment, of C9ORF72 mutation carriers
TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics.
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are age-related neurodegenerative disorders with shared genetic etiologies and overlapping clinical and pathological features. Here we studied a novel ALS/FTD family and identified the P362L mutation in the low-complexity domain (LCD) of T cell-restricted intracellular antigen-1 (TIA1). Subsequent genetic association analyses showed an increased burden of TIA1 LCD mutations in ALS patients compared to controls (p = 8.7 × 1
Rational Design of Pathogen-Mimicking Amphiphilic Materials as Nanoadjuvants
An opportunity exists today for cross-cutting research utilizing advances in materials science, immunology, microbial pathogenesis, and computational analysis to effectively design the next generation of adjuvants and vaccines. This study integrates these advances into a bottom-up approach for the molecular design of nanoadjuvants capable of mimicking the immune response induced by a natural infection but without the toxic side effects. Biodegradable amphiphilic polyanhydrides possess the unique ability to mimic pathogens and pathogen associated molecular patterns with respect to persisting within and activating immune cells, respectively. The molecular properties responsible for the pathogen-mimicking abilities of these materials have been identified. The value of using polyanhydride nanovaccines was demonstrated by the induction of long-lived protection against a lethal challenge of Yersinia pestis following a single administration ten months earlier. This approach has the tantalizing potential to catalyze the development of next generation vaccines against diseases caused by emerging and re-emerging pathogens
- …