22,518 research outputs found

    Ecosystem (dis)benefits arising from formal and informal land-use in Manchester (UK); a case study of urban soil characteristics associated with local green space management

    Get PDF
    Urban soils are subject to anthropogenic influences and, reciprocally, provide benefits and dis-benefits to human wellbeing; for example carbon storage, nutrient cycling and the regulation trace element and contaminant mobility. Collective stewardship of urban green commons provides contemporary examples of the diversity of uses and management of green space in cities and represents a growing movement in user participation in, and awareness of, the importance of urban ecological health. Exploring the range of social-ecological benefits exemplified in the urban environment has generally focused on above-ground processes, with few studies examining the potential for (dis)benefits arising from edaphic characteristics of collectively-managed spaces. An investigation into the influence of formal and informal green space management on carbon fluxes and heavy metal concentrations in urban soils was carried out in Manchester (UK) finding that carbon storage in soils of collectively managed urban green commons (7.15 ±1.42 kg C m⁻²) was significantly greater than at formally managed sites (for example city parks: 5.08 ±0.69 kg C m⁻²), though the latter exhibited reduced losses through CO2 emission. Variation in heavy metal concentrations and mobility were likewise observed, exemplified by the acidification of surface soils by leaf litter at orchard sites, and the resultant increase in the mobility of lead (Pb) and zinc (Zn). The results of this study indicate the importance of small-scale contemporary urban green space management on selected ecosystem services provided by the limited soil resource of cities. Thus, a greater consideration of the effects of horticultural and amenity activities with regards to soil quality/functionality is required to ensure available urban green commons retain or increase their ecological quality over time

    Hunter Activities, Conflicts, and Opinions Following Implementation of a Controlled Waterfowl Hunting Program on the Rend Lake Public Hunting Area in 1995-96

    Get PDF
    Waterfowl Program Periodic Report no. 90Report issued on: 2 December 199

    GERHARD KRÜSS

    Get PDF
    n/

    Short-term studies underestimate 30-generation changes in a butterfly metapopulation

    Get PDF
    Most studies of rare and endangered species are based on work carried out within one generation, or over one to a few generations of the study organism. We report the results of a study that spans 30 generations (years) of the entire natural range of a butterfly race that is endemic to 35 km2 of north Wales, UK. Short-term studies (surveys in single years and dynamics over 4 years) of this system led to the prediction that the regional distribution would be quite stable, and that colonization and extinction dynamics would be relatively unimportant. However, a longer-term study revealed unexpectedly high levels of population turnover (local extinction and colonization), affecting 18 out of the 20 patches that were occupied at any time during the period. Modelling the system (using the 'incidence function model' (IFM) for metapopulations) also showed higher levels of colonization and extinction with increasing duration of the study. The longer-term dynamics observed in this system can be compared, at a metapopulation level, with the increased levels of variation observed with increasing time that have been observed in single populations. Long-term changes may arise from local changes in the environment that make individual patches more or less suitable for the butterfly, or from unusual colonization or extinction events that take metapopulations into alternative states. One implication is that metapopulation and population viability analyses based on studies that cover only a few animal or plant generations may underestimate extinction threats
    corecore