2,725 research outputs found

    The role of the Boudouard and water-gas shift reactions in the methanation of CO or CO2 over Ni/γ-Al2O3 catalyst

    Get PDF
    The Boudouard and the water-gas shift reactions were studied at different temperatures between 453 and 490 K over a Ni/γ-Al2O3 catalyst in a Carberry batch reactor using various mixtures of CO, H2 and CO2. The activity of the Boudouard reaction was found to be low, compared to the water-gas shift reaction, and diminished over time, suggesting that the temperature was too low for significant activity after an initiation period of CO adsorption. Furthermore, the rate of the Boudouard reaction has been reported to decrease in the presence of H2O and H2. The water-gas shift reaction was found to be the main reaction responsible for the production of CO2 in a mixture of CO, H2 and H2O in the batch reactor. The ratio of the total amount of CO consumed to the total amount of CO2 produced showed that the catalyst was also active towards hydrogenation, where the rate of the hydrogenation reaction was very much faster than the water-gas shift reaction. The resulting ratio of pH2 to pCO was found to be extremely low, probably leading to the production of long-chain hydrocarbons. The stoichiometry of the overall reaction was such that for every mole of mole of CO2 produced, 1.5 mol of CO was consumed in the batch reactor. Kinetic studies were performed in the batch reactor. An Eley-Rideal mechanism was found to provide a good agreement with the experimental results over a wide range of partial pressures of steam and CO

    UK Breastfeeding Helpline support: An investigation of influences upon satisfaction

    Get PDF
    Background Incentive or reward schemes are becoming increasingly popular to motivate healthy lifestyle behaviours. In this paper, insights from a qualitative and descriptive study to investigate the uptake, impact and meanings of a breastfeeding incentive intervention integrated into an existing peer support programme (Star Buddies) are reported. The Star Buddies service employs breastfeeding peer supporters to support women across the ante-natal, intra-partum and post-partum period. Methods In a disadvantaged area of North West England, women initiating breastfeeding were recruited by peer supporters on the postnatal ward or soon after hospital discharge to participate in an 8 week incentive (gifts and vouchers) and breastfeeding peer supporter intervention. In-depth interviews were conducted with 26 women participants who engaged with the incentive intervention, and a focus group was held with the 4 community peer supporters who delivered the intervention. Descriptive analysis of routinely collected data for peer supporter contacts and breastfeeding outcomes before and after the incentive intervention triangulated and retrospectively provided the context for the qualitative thematic analysis. Results A global theme emerged of 'incentives as connectors', with two sub-themes of 'facilitating connections' and 'facilitating relationships and wellbeing'. The incentives were linked to discussion themes and gift giving facilitated peer supporter access for proactive weekly home visits to support women. Regular face to face contacts enabled meaningful relationships and new connections within and between the women, families, peer supporters and care providers to be formed and sustained. Participants in the incentive scheme received more home visits and total contact time with peer supporters compared to women before the incentive intervention. Full participation levels and breastfeeding rates at 6-8 weeks were similar for women before and after the incentive intervention. Conclusion The findings suggest that whilst the provision of incentives might not influence women's intentions or motivations to breastfeed, the connections forged provided psycho-social benefits for both programme users and peer supporters

    Left Superior Pulmonary Vein Rhythm Masquerading as Sinus Rhythm

    Get PDF
    Rajiv Mahajan, Han S. Lim, Dennis H. Lau, Prashanthan Sander

    Automated segmentation of soft tissue in abdominal CT scans

    Get PDF
    Master'sMASTER OF SCIENC

    Kinetics of the reduction of wüstite by hydrogen and carbon monoxide for the chemical looping production of hydrogen

    Get PDF
    Hydrogen of very high purity can be produced via the steam-iron process, in which steam oxidises metallic Fe in 3/4Fe + H2O→1/4Fe3O4 + H2. It is then advantageous to oxidise Fe3O4 in air to Fe2O3, an oxygen-carrier. This higher oxide of Fe is then reduced to regenerate metallic iron by reacting with synthesis gas, producing metallic Fe and possibly some wüstite (FexO, 0<x<1). In this three-stage process, the reduction of FexO to Fe is the slowest reaction. This paper is concerned with the kinetics of the reduction of wüstite (FexO) by reaction with CO, and, or H2. Starting with pure (99 wt%) wüstite, the intrinsic kinetics of its reduction to metallic iron were measured in fluidised beds at different temperatures. The reaction was found to have 3 distinct stages, (i) the removal of lattice oxygen in wüstite, (ii) rate increasing with conversion of solid and (iii) rate decreasing with conversion of solid. A random pore model was used to simulate the latter stages of the reduction of wüstite by either H2 or CO or a mixture of the two. It was found that the intrinsic rate of reduction in H2 is substantially faster than with CO, whereas the resistances to diffusion of H2 and CO through the product layer of Fe are comparable; these factors account for differences in the overall rates observed with these gases.This is the final published version. It is also available from the publisher at: http://www.sciencedirect.com/science/article/pii/S000925091400428X

    CO2-gasification of a lignite coal in the presence of an iron-based oxygen carrier for chemical-looping combustion

    Get PDF
    AbstractChemical-looping combustion (CLC) has the inherent property of separating the product CO2 from flue gases. Instead of air, it uses an oxygen carrier, usually in the form of a metal oxide, to provide oxygen for combustion. All techniques so far proposed for chemical looping with solid fuels involve initially the gasification of the solid fuel in order for the gaseous products to react with the oxygen carrier. Here, the rates of gasification of coal were compared when gasification was undertaken in a fluidised bed of either (i) an active Fe-based oxygen carrier used for chemical looping or (ii) inert sand. This enabled an examination of the ability of chemical looping materials to enhance the rate of gasification of solid fuels. Batch gasification and chemical-looping combustion experiments with a German lignite and its char are reported, using an electrically-heated fluidised bed reactor at temperatures from 1073 to 1223K. The fluidising gas was CO2 in nitrogen. The kinetics of the gasification were found to be significantly faster in the presence of the oxygen carrier, especially at temperatures above 1123K. A numerical model was developed to account for external and internal mass transfer and for the effect of the looping agent. The model also included the effects of the evolution of the pore structure at different conversions. The presence of Fe2O3 led to an increase in the rate of gasification because of the rapid oxidation of CO by the oxygen carrier to CO2. This resulted in the removal of CO and maintained a higher mole fraction of CO2 in the mixture of gas around the particle of char, i.e. within the mass transfer boundary layer surrounding the particle. This effect was most prominent at about 20% conversion when (i) the surface area for reaction was at its maximum and (ii) because of the accompanying increase in porosity and pore size, intraparticle resistance to gas mass transfer within the particle of char had fallen, compared with that in the initial particle. Excellent agreement was observed between the rates predicted by the numerical model and those observed experimentally

    System-specific parameter optimization for non-polarizable and polarizable force fields

    Full text link
    The accuracy of classical force fields (FFs) has been shown to be limited for the simulation of cation-protein systems despite their importance in understanding the processes of life. Improvements can result from optimizing the parameters of classical FFs or by extending the FF formulation by terms describing charge transfer and polarization effects. In this work, we introduce our implementation of the CTPOL model in OpenMM, which extends the classical additive FF formula by adding charge transfer (CT) and polarization (POL). Furthermore, we present an open-source parameterization tool, called FFAFFURR that enables the (system specific) parameterization of OPLS-AA and CTPOL models. The performance of our workflow was evaluated by its ability to reproduce quantum chemistry energies and by molecular dynamics simulations of a Zinc finger protein.Comment: 62 pages and 25 figures (including SI), manuscript to be submitted soo
    corecore