33 research outputs found

    Reading the Number of Extra Dimensions in the Spectrum of Hawking Radiation

    Full text link
    After a brief review of the production and decay of Schwarzschild-like (4+n)-dimensional black holes in the framework of theories with Large Extra Dimensions, we proceed to derive the greybody factors and emission rates for scalars, fermions and gauge bosons on the brane. We present and discuss analytic and numerical methods for obtaining the above results, and demonstrate that both the amount and type of Hawking radiation emitted by the black hole can help us to determine the number of spacelike dimensions that exist in nature.Comment: 8 pages, Latex file, 1 figure, to appear in the proceedings of the String Phenomenology 2003 Conference, Durham, UK, 29th July-4th August, 200

    Characterization of the fullerene derivative [60]PCBM, by high-field carbon, and two-dimensional NMR spectroscopy, coupled with DFT simulations

    Get PDF
    High-resolution (600 MHz) 1H and 13C chemical shift and 2D HETCOR NMR spectra of [60]PCBM were recorded. Resonances from every carbon atom of the ester, phenyl and cyclo-fullerenyl groups, were fully accounted. Assignments of the fullerene cyclopropa-ring, and all phenyl and ester carbons to their respective resonances were based on a HETCOR 2D NMR spectrum. Remaining fullerene assignments were made to a high level of confidence with the aid of an ωB97X hybrid HF/DFT simulation of the 13C NMR spectrum employing a triple zeta Dunning-type basis set. The best result was obtained with the range-separation parameter ω set effectively to zero. This indicates that the fraction of HF in the HF/DFT hybrid at very short range is the dominant factor in achieving good NMR results, that ωB97X with its 15.77% HF fraction at rij = 0 seems very well suited, and that allowing the HF fraction to increase with range is not particularly beneficial. The resulting spectrum had a remarkable qualitative agreement with experiment with a very low mean absolute error for fullerene carbons of 0.09 ppm, which was considerably lower than the 0.28 ppm of the more commonly used B3LYP/6-31G(d,p) method

    Hybridization of Local Exciton and Charge-Transfer States Reduces Non-Radiative Voltage Losses in Organic Solar Cells

    Get PDF
    A number of recent studies have shown that the non-radiative voltage losses in organic solar cells can be suppressed in systems with low energetic offsets between donor and acceptor molecular states, but the physical reasons underpinning this remain unclear. Here, we present a systematic study of 18 different donor:acceptor blends to determine the effect that energetic offset has on both radiative and non-radiative recombination of the charge transfer (CT) state. We find that for certain blends, low offsets result in hybridization between charge-transfer and lowest donor or acceptor exciton states, which leads to a strong suppression in the non-radiative voltage loss to values as low as 0.23V associated with an increase in the luminescence of the CT state. Further, we extend a two-state CT-state recombination model to include the interaction between CT and first excited states, which allows us to explain the low non-radiative voltage losses as an increase in the effective CT to ground state oscillator strength due to the intensity borrowing mechanism. We show that low non‐radiative voltage losses can be achieved in material combinations with a strong electronic coupling between CT and first excited states, and where the lower band gap material has a high oscillator strength for transitions from the excited state to the ground state. Finally, from our model we propose that achieving very low non-radiative voltage losses may come at a cost of higher overall recombination rates, which may help to explain the generally lower FF and EQE of highly hybridized systems

    Organic Single-Crystalline p-n Heterojunctions for High-Performance Ambipolar Field-Effect Transistors and Broadband Photodetectors

    Get PDF
    Organic semiconducting single crystals are ideal building blocks for organic field-effect transistors (OFETs) and organic photodetectors (OPDs) because they can potentially exhibit the best charge transport and photoelectric properties in organic materials. Nevertheless, it is usual for single-crystal OFETs to be built from one kind of organic material in which the dominant transport is either electron or hole; such OFETs show unipolar charge transport. Furthermore, single-crystal OPDs present high performance only in restricted regions because of the limited absorption of one-component single crystals. In an ideal situation, devices which comprise both electron- and hole-transporting single crystals with complementary absorptions, such as single-crystalline p–n heterojunctions (SCHJs), can permit broadband photoresponse and ambipolar charge transport. In this paper, a solution-processing crystallization strategy to prepare an SCHJ composed of C60 and 6,13-bis­(triisopropylsilylethynyl)­pentacene (TIPS-PEN) was shown. These SCHJs demonstrated ambipolar charge-transport characteristics in OFETs with a balanced performance of 2.9 cm2 V–1 s–1 for electron mobility and 2.7 cm2 V–1 s–1 for hole mobility. This demonstration is the first of single-crystal OFETs in which both electron and hole mobilities were over 2.5 cm2 V–1 s–1. OPDs fabricated upon as-prepared SCHJs exhibited highly sensitive photoconductive properties ranging from ultraviolet to visible and further to near-infrared regions as a result of complementary absorption between C60 and TIPS-PEN, thereby attaining photoresponsivities that are among the highest reported values within the OPDs. This work would provide valuable references for developing novel SCHJ systems to achieve significant progress in high-performance ambipolar OFETs and broadband OPDs

    Relationship between molecular properties and degradation mechanisms of organic solar cells based on bis-adducts of phenyl-C61 butyric acid methyl ester

    Get PDF
    Environmental stability remains a major challenge for the commercialisation of organic solar cells and degradation pathways remain poorly understood. Designing materials for improved device stability requires an understanding of the relationship between the properties of the donor or acceptor molecule and different degradation mechanisms. Here we study the correlations between various molecular parameters of the fullerene derivative bis-PCBM and the degradation rate of polymer:bis-PCBM organic solar cells, based on the same carbazole-alt-benzothiadiazole polymer, in aerobic and anaerobic conditions. We compare eight high purity bis-PCBM isomers with different electronic, chemical and packing properties along with PCBM and the mixture of bis isomers. In the case of aerobic photodegradation, we find that device degradation rate is positively correlated to the LUMO energy of the bis-PCBM isomer and to the degree of crystallinity of the isomer, while the correlation of degradation with driving force for epoxide formation is unclear. These results support the idea that in these samples, aerobic photodegradation proceeds via superoxide formation by the photogenerated polaron on the fullerene, followed by further chemical reaction. In the absence of air, photodegradation rate is correlated with molecular structure, supporting the mechanism of microstructural degradation via fullerene dimerization. The approach and findings presented here show how control of specific molecular parameters through chemical design can serve as a strategy to enhance stability of organic solar cells
    corecore