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2

The 1H NMR spectrum of [60]PCBM was recorded at high resolution (600 MHz). All 1H resonances 

expected of the Cs symmetry molecule were observed. The spin-spin couplings in the 1H NMR 

spectrum were not as expected at 1st order. Instead, the effects of AA′BB′-type 2nd-order couplings 

are clearly observed for the protons attached to both ester carbons C3 and C4, which were analyzed 

in terms of 7 coupling constants. This indicates that there is no free rotation of the sigma bonds of 

the alkyl chain in the ester group – although rotation becomes free at a larger distance from the 

fullerene bridge carbon (C61). The 1H results further indicated that there is a 1:6:1 population ratio 

of the three staggered conformers (gauche-anti-gauche′) about the ester group C3-C4 bond. These 

results may aid in the understanding of the morphological interactions between [60]PCBM and its 

surroundings in condensed-phase organic electronic devices such as organic and perovskite 

photovoltaics.

 TOC GRAPHICS

KEYWORDS PCBM, structure, geometry, multiplet, coupling constant, staggered conformer.
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3

Phenyl butyric acid methyl ester ([60]PCBM), or more properly in IUPAC nomenclature, methyl 

4-[61-phenyl,3aH ′ -cyclopropa-1,9-(C60-Ih)[5,6]-fullerenyl]butanote, is one of the most important 

molecules in organic electronics; serving as an n-type material in bulk heterojunction and 

perovskite photovoltaics, field effect transistors, light emitting diodes and photodetectors.1-7 It was 

first reported by Hummelen et al. in 1995 as one of several methano-bridged fullerene derivatives 

they had newly synthesized (and termed M1OMe at the time).8 Amongst other things, they 

reported the 1H nuclear magnetic resonance (NMR) spectral line positions of [60]PCBM. This 

included describing the resonances related to the C3H6 alkyl chain as being “multiplets,” This 

behavior is unexpected, as the 1H NMR spectrum of this part of the molecule should show spin-spin 

couplings that give rise to a series of three 1:2:1 Pascal triangle triplets from the splitting by CH2 

groups. However, although reported, this was not commented on, or analyzed. In addition, two 

subsequent reports of the 1H NMR spectrum9,10 did not mention this multiplet behavior.

In this paper we analyze the spin-spin coupling structure of these previously identified 1H 

multiplets in terms of AA′BB′-type 2nd-order couplings that result from the hydrogens attached to 

carbons C2, C3 and C4 of the ester group. The 2nd-order effects occur because the two hydrogens 

attached to each of these carbons are symmetrically equivalent, but magnetically inequivalent. This 

behavior indicates there is restricted rotation about the bond between these two carbons. This 

analysis also gives insight into the relative populations at room temperature of the three staggered 

conformers (gauche, anti and gauche′) about the C3-C4 bond of the ester group. To aid in the 

interpretation of the spectrum, Figure 1 depicts [60]PCBM with the hydrogens number in 
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4

accordance with the IUPAC label for the carbon they are attached to (e.g., H4 and H4′ are attached 

to ester carbon C4).

.

Figure 1. A diagram of [60]PCBM showing the hydrogen numbering system used in this letter. 

Figure 2 shows the 1H NMR spectrum of [60]PCBM. The insets show enlargements of 

individual resonances that indicate spin-spin couplings with matched intensities. In addition 

to the signals from [60]PCBM, the full spectrum exhibits several other resonances from 

contaminants. Primary among these are resonances from toluene are a singlet at 2.26 ppm 

from the methyl group; a triplet at 7.09 ppm from the hydrogens attached to the toluene 

carbon C4, and the coincidence of a doublet (from the 7.20 ppm. 
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5

Figure 2. The 1H NMR spectrum of [60]PCBM recorded in CS2 solution at 300 K. The insets 

show the spin-spin splitting of resonances from the phenyl ring and the C3H6 part of the 

ester group. The asterisks denote resonances from toluene and benzene from the sample 

preparation which were tenaciously retained, and the singlet at 0.00 ppm is the TMS 

reference.

That the resonances shown in Figure 2 are from [60]PCBM is confirmed by three main 

indicators. Firstly, they occur at the expected chemical shifts for [60]PCBM; secondly, their 

integrations are all consistent with those expected of [60]PCBM – with all in near-integer 

ratios (to two significant figures); and finally, they are consistent with the previous report 

from the original synthesis.8
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6

Discussing the aliphatic protons first, the singlet at 3.50 ppm, of integration 3H, is clearly 

from the three methyl protons. The remaining three resonances at 2.81, 2.34 and 2.07 ppm, 

all of integration 2H, are from the -CH2-CH2-CH2- chain. These show as a 5-peak multiplet, 

a 1:2:1 triplet and a 9-peak multiplet, respectively.

Based on typical group resonance values the 1H resonance with the lowest chemical shift 

(2.07 ppm) may be assigned to hydrogens attached to the central carbon of this chain (carbon 

C3 of the methyl butanoate group) and the resonance with the highest chemical shift (2.81 

ppm) assigned to the hydrogens attached to the C4 carbon of that group. This leaves the 

resonance at 2.34 ppm as originating from the hydrogens of C2. These assignments concur 

with those from Ref. 1.

At first order, the resonance from the two chemically equivalent hydrogens attached to 

carbon C4 of the methyl butanoate group is expected to show spin-spin coupling to the two 

chemically equivalent hydrogens attached to the neighboring carbon C3. As such, it should 

comprise a 1:2:1 triplet of integration I = 2, with a spin-spin coupling constant 3J ~ 8 Hz. 

However, what is observed for the C4 hydrogens is, at first sight, roughly a 2:1:2:1:2 pentet. 

This feature was previously reported as a ‘multiplet’ but not analyzed or explained.8 Such a 

line pattern indicates that the two hydrogens of C4 are not magnetically equivalent to each 

other despite being symmetrically equivalent. Similarly, the two C3 hydrogens are also 

magnetically inequivalent. Hence, this system shows 2nd-order spin-spin couplings between 

the hydrogens of C4 and C3. The situation presented for the C4 hydrogens is a 4-spin AA′BB′

-type system; where A and A ′  represent the two chemically equivalent, but magnetically 
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7

inequivalent, hydrogens attached to C4, and B and B ′ represent their analogues attached to 

the neighboring carbon C3. This situation generally yields 4 coupling constants: 3JAB, 3JAB ′ , 

2JAA ′ and 2JBB ′. Generally, the AA ′BB ′ system yields a spectrum that is comprised of 10 lines 

for the hydrogens at C4, resulting from a doublet, and two separate AB-type quartets. 

However, the measured spectrum contains 7 lines (close inspection of the abovementioned 

5-line multiplet, reveals two very weak outer lines). Such a pattern is explained in Reference 

11 and presented in Table 31 of that reference. It represents the situation where 2JAA′ and 2JBB′ 

are equal to within experimental error, which leads to coincidences of 3 lines. As such, the 

spectrum may be analyzed in terms of three features. The first is an intense doublet (2.79 and 

2.83 ppm), centered on A and has a separation of (3JAB + 3JAB). The second generally is an 

AB-type quartet – again centered on A. However, with 2JAA = 2JBB, the two outer lines are 

coincidental in our case. This has the appearance of a doublet (2.80 and 2.82 ppm) of total 

separation of (3JAB – 3JAB). The third is another AB-type quartet centered on A; which this 

time has the two central lines being coincidental. This yields a triplet (2.76, 2.81 and 2.86 

ppm) with two equal separations of (2JAA + 2JBB); this time the inner line is much more 

intense than the outer lines. Applying these analyses to the present spectrum indicates that: 

A = 1683.82 Hz, on the instrument used, corresponding to a chemical shift of  = 2.81 ppm 

from TMS. The splitting of the intense doublet indicated that 3JAB + 3JAB = 3J4,3 + 3J4,3 = 16.4 

Hz. The width of the 1st quartet indicates that 3JAB – 3JAB = 3J4,3 – 3J4,3 = 6.8 Hz. From these it 

can be established that 3J4,3 and 3J4,3 are 11.6 Hz and 4.8 Hz, respectively (as 3J4,3 – 3J4,3 is 
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positive, 3J4,3 > 3J4,3). Since 2JAA = 2JBB, from the shape and spacings of the 2nd quartet, (2JAA + 

2JBB) = 27.5 Hz, in this case, it is established that 2J4,4 = 2J3,3 = 13.8 Hz.

To test these analyses, this multiplet was simulated using the WinDNMR computer 

program12 for an AABB system using the couplings established above, together with the 

experimental A-B difference of 430 Hz and the instrumental resolution (0.07 Hz). The 

result, shown in Figure 3, is remarkably like the experimental spectrum of this multiplet. The 

splittings and relative intensities, including the 2nd-order unevenness of those intensities of 

the simulation is effectively indistinguishable from experiment. This suggests that all the 

couplings for the protons on ester carbon C4 established from the 2nd-order analysis are 

reliable.
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9

Figure 3. WinDNMR simulation (top) of the experimental spectrum (bottom) of the ester C4 

protons based on an AABB system with 3J4,3, 3J4,3 and 2J4,4 being 11.6, 4.8 and 13.8 Hz, 

respectively (from the shown experimental splittings), and on 4 – 3 being the experimental 

430 Hz.

Staggered conformers are considerably more stable than eclipsed conformers. Hence, they 

are more likely to be populated. In addition, the presence of 2nd-order couplings between the 

hydrogens of the ester carbon C4 with those at C3 strongly suggests that there is an unevenly 

population amongst the three staggered conformers (gauche, anti and gauche′). This is 

because, even at 2nd-order, an equal population of all three conformers yields the normal 1st-

order 1:2:1 triplet. This means that there is a preferred conformer resulting from hinderance 

to full rotation about the C3–C4 bond of the ester group. There is not usually any hindered 

rotation, and thereby no 2nd-order effects in the proton spectra of alkyl chains. As such, the 

hindered rotation about the ester C3–C4 bond, which gives rise to the 2nd-order effects, is 

most likely to originate from the thing that makes the difference – close proximity via direct 

bonding of C4 to the relatively huge phenyl-cyclopropafullerenyl group.

A reasonable estimate of the relative populations of the three staggered conformers may be 

obtained via the computer program MestReJ13 using a Colucci-Jungk-Gandour analysis.14 

Although this program has empirical data for an ester substituent, it has none for a phenyl 

cyclopropafullerenyl group. However, making the reasonable substitution of phenyl group 

gives 3JAB = 3.36 Hz for the anti and gauche conformers and 3JAB = 14.37 Hz for the gauche′ 
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10

conformer, and 3JAB′ = 14.37 Hz for the anti conformer and 3JAB = 3.36 Hz for the gauche and 

gauche′ conformers.

A population analysis based on these figures suggests the ‘anti’ conformer is occupied for 

about 75% of the time, while the occupation times of the two gauche conformers are equal at 

about 12.5% each. This is because a 75:12.5:12.5 ratio gives 3J4,3 = (0.75 × 14.37 + 0.125 × 3.36 

+ 0.125 × 3.36) = 11.6 Hz and also gives 3J4,3′ = (0.75 × 3.36 + 0.125 × 3.36 + 0.125 × 14.37) = 

4.8 Hz. This shows that it is only the population difference that is the cause of the 2nd-order 

effects. This is because if the populations are equal (one third each) then 3J4,3 and 3J4,3′ would 

be indistinguishable – giving only the 1st-order splitting. Indeed, substituting equal 

populations into the above equations yields a 1:2:1 triplet with 3J4,3′ = 3J4,3 = 7.1 Hz, which is 

typical of an alkyl chain. 

The values of 3J4,3 and 3J4,3′ obtained via this analysis are both consistent with the 

experimental values of 11.6 and 4.8 Hz. It suggests that there is a strong preference for the 

‘anti’ conformer; whereby, the carbon C4 of the ester group lies along the mirror plane. 

However, there is some probability of rotation about the C3-C4 bond through the eclipsed 

conformer to the gauche staggered conformers on either side – but there is a negligible 

probability of rotation from the gauche conformer, through the conformer with the phenyl 

group and the remainder of the ester being eclipsed, to the gauche′ staggered conformer. 

That is, through restricted rotation about the C3-C4 bond the ester group dynamically flips 
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11

back and forth between the two gauche conformers but only via the anti conformer; while 

spending most of its time in the middle (anti conformer).

The proton on carbon C2 of the ester group, at the other end of the -CH2-CH2-CH2- chain, 

closely resembles a 1st-order 1:2:1 triplet with a chemical shift of  = 2.34 ppm and a 3J3,2 

coupling, through protons on the middle carbon(C3), of 7.4 Hz. The presence of this triplet 

indicates that the populations of the three conformers of the type discussed above are 

effectively equally populated (i.e., that there is reasonably free rotation about the ester C2-C3 

bond). Closer analysis indicated that there is also what appears to be a 4J2,4 coupling to the 

hydrogens of ester carbon C4 with a coupling constant 1.7 Hz. Hence, this resonance appears 

as a triplet of triplets.

The resonance of the protons on the middle carbon (C3 of the ester group) has a chemical 

shift of  = 2.07 ppm and is very complex – with some 10 components. Similarly to the 

protons of C4, this feature was previously reported as an unexplained multiplet.8 However, as 

these protons are coupled to those on C4 (with its 2nd-order couplings) and to those on 

carbon C2 (with its 1st-order couplings), the coupling constants, of the protons on this carbon 

are those already determined (2J3,3′ = 13.8 Hz, 3J3,4 = 11.6 Hz, 3J3,4′ = 4.8 Hz, 3J3,2 = 7.4 Hz).

Turning to the aromatic resonances, the three resonances at 7.79, 7.41, and 7.34 ppm (the 

insets on the left of Figure 2) are from the protons of the phenyl ring. The integration 2 line 

at 7.79 is clearly from the hydrogens attached to the symmetrically equivalent phenyl 
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12

carbons C2 and C6 (ortho position). This resonance seems to show the doublet of doublets 

pattern expected of this position. However, closer inspection reveals unresolved shoulders 

indicative of weak 2nd-order effects. This suggests that 4J2,6 and 4J3,5 are both vanishingly 

small. Although the additional 2nd-order peaks are seen, unlike for the C3H6 chain of the 

ester, the effect is so weak that no reliable measurement can be made of their resonance 

frequencies. Hence, the resonances from the phenyl C2|C6 hydrogens were analyzed in 

terms of their measurable 1st-order spin-spin splitting. That is, a ddd pattern with coupling 

constants 3J2,3 = 7.8 Hz and 4J2,4 = 1.3 Hz. The 5J2,5 coupling constant although present was not 

resolved enough to be reliably determined from the spectrum.

The integration-2 resonance at 7.41 ppm is assigned to the phenyl hydrogens at C3/C5 

(meta position). This resonance was reported as a 1:2:1 triplet.8 However, it shows as a 

double doublet of doublets in which one line from each doublet is practically coincident – 

giving the effect of a triplet. This is evidenced by the fact the intense ‘central’ line is not at 

the center of the ‘triplet’. Hence, two coupling constants were measured 3J3,2 = 7.8 Hz and 

3J3,4 = 7.3 Hz. A doublet of doublets is expected for this resonance because the splitting of the 

C3 hydrogen by that at C2 is very close to but not identical to the splitting of the hydrogen 

as C3 by the one at C4. There is also evidence of further doublet splitting of this resonance 

by the hydrogen at phenyl C6 (as evidenced by shoulders) with 5J3,6 = 2.0 Hz. As with the 

resonance for the hydrogens at C2/C6, there is evidence of immeasurable 2nd-order effects, as 

evidenced by weak unresolved shoulders on the lines. The 1H integral resonance at 7.34 ppm 
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13

is assigned to the hydrogen at phenyl carbon C4 (para position) and shows as a triplet of 

triplets with coupling constants of 3J4,3 = 7.3 Hz and 4J4,2 = 1.3 Hz.

Table 1. The 1H NMR chemical shifts, integrations, assignments and spin-spin coupling 

constants for [60]PCBM as extracted from the 1H NMR spectrum. The multiplets both show 

strong 2nd-order spin-spin interactions from symmetrically equivalent but magnetically 

inequivalent protons.

Chemical shift/ppm Int. Assignment Multiplet Spin-spin coupling constant/Hz
7.79 2H o-Ph(C2/C6) ddd 3J2,3  7.8 4J2,4  1.3 5J2,5  (unresolved)
7.41 2H m-Ph(C3/C5) ddd 3J3,2  7.8 3J3,4  7.3 5J3,6  2.0
7.34 1H p-Ph(C4) tt 3J4,3  7.3 4J4,2  1.3
3.50 3H Me s
2.81 2H Ph-C-CH2- 2nd-order m 2J4,4′  13.8 3J4,3  11.6 3J4,3′  4.8
2.34 2H -CH2-CH2-CO tt 3J2,3   7.4 4J2,4  1.7
2.07 2H CH2-CH2-CH2- 2nd-order m 2J3,3′  13.8 3J3,4  11.6 3J3,4′  4.8 3J3,2  7.4

In summary, spin-spin couplings in the 1H spectrum for the ester group in [60]PCBM were 

not as expected at 1st-order. Clear 2nd-order couplings are seen; revealing that the two 

protons on each of the three carbons of the C3H6 chain are not magnetically equivalent, 

despite being symmetrically equivalent. This indicates that there is restricted rotation about 

the sigma bond of the alkyl chain in ester group owing to steric effects from the bulky 

phenyl-cyclopropafullerenyl group. There is no full rotation about the ester bond connected 

directly to the fullerene bridge carbon (C61). However, the rotation becomes increasingly 

freer as the distance from the fullerene increases. This is evidenced by strong 2nd-order 

effects on the hydrogens at ester carbon C4, mixed effects at C3, and almost normal 1st order 
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free-rotation splitting at the hydrogens of ester carbon C2. Assuming an AA′BB′-type system, 

the hydrogens of ester carbons C3 and C4 revealed 7 coupling constants. It was also 

determined that there was hindered rotation about the ester C3–C4 bond, which yielded a 

1:6:1 population ratio of the three staggered conformers (gauche-anti-gauche′) about this 

bond. These hindered rotational and conformational conclusions may also provide insights 

into the packing behavior of [60]PCBM in the solid state;15,16 and perhaps more importantly, 

it may aid in the understanding of the morphological interactions between [60]PCBM and its 

surroundings in condensed-phase organic electronic devices such as organic and perovskite 

photovoltaics.

[60]PCBM was synthesized via the method of Hummelen et al.8 and purified following the 

method of Shi et al.17 used to isolate the isomers of bis[60]PCBM. The 1H NMR spectrum (16 

co-added scans) was recorded at 300 K on Bruker AV600 spectrometer in CS2 solution 

following the method of Liu et al.18 for the 13C NMR spectra of 19 purified isomers of 

bis[60]PCBM. Chemical shifts (ppm) are referenced to trimethylsilane (TMS) and reported to 

two decimal places with insignificant error, and the spin-spin couplings (Hz) are reported to 

1 decimal point with an error of ±0.1 Hz. Step-by-step details of the synthesis, HPLC 

chromatogram and NMR experimental details given as Supporting Information. 

ASSOCIATED CONTENT

Supporting Information. 
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The following files are available free of charge.

Synthesis, HPLC chromatogram and NMR experimental details (PDF)
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