225 research outputs found

    State and Local Governments Address the Twin Challenges of Climate Change and Energy Alternatives

    Get PDF
    This article examines new programs and initiatives that states, local governments, and regional groups have embarked upon to address the issues of climate change and energy alternatives. The article also questions whether these efforts will be overtaken by federal action or whether a tradition of cooperative federalism will continue

    State and Local Governments Address the Twin Challenges of Climate Change and Energy Alternatives

    Get PDF
    This article examines new programs and initiatives that states, local governments, and regional groups have embarked upon to address the issues of climate change and energy alternatives. The article also questions whether these efforts will be overtaken by federal action or whether a tradition of cooperative federalism will continue

    The Water Requirements and Pollutant Potential in the Gasification of Carbonaceous Shales

    Get PDF
    A laboratory-scale, batch operated gasifier was used to evaluate the heating value, process and cooling water requirements, and water pollution potential of gasification of carbonaceous shales. These potentially valuable fossil fuels are found over large areas of Southern and Eastern Utah and vary widely in quality depending on the amount of intermixed inorganic material. The results indicate that a synthesis gas, consisting primarily of hydrogen and carbon monoxide, can be produced from carbonaceous shales. The total heating values of the synthesis gas from the carbon shales examined ranged from 4 to 62 percent of that of coal. The process water requirements per unit of heaing value obtained for gasification of the carbonaceous shales tended to be 5 to 15 percent higher than that for coal. Cooling water requirements were similarly higher due to the greater quantity of ask quenching water needed for the shales. The quantity of phenols, ammonia-N, and total organic carbon produced from the gasification of coal was significantly greater than for either of the shales, when compared on a mass basis. Differences in process condensate constituents, such as mutagenicity and trace elements, were also determined for the coal and shale samples

    High Levels of Miticides and Agrochemicals in North American Apiaries: Implications for Honey Bee Health

    Get PDF
    BACKGROUND: Recent declines in honey bees for crop pollination threaten fruit, nut, vegetable and seed production in the United States. A broad survey of pesticide residues was conducted on samples from migratory and other beekeepers across 23 states, one Canadian province and several agricultural cropping systems during the 2007-08 growing seasons. METHODOLOGY/PRINCIPAL FINDINGS: We have used LC/MS-MS and GC/MS to analyze bees and hive matrices for pesticide residues utilizing a modified QuEChERS method. We have found 121 different pesticides and metabolites within 887 wax, pollen, bee and associated hive samples. Almost 60% of the 259 wax and 350 pollen samples contained at least one systemic pesticide, and over 47% had both in-hive acaricides fluvalinate and coumaphos, and chlorothalonil, a widely-used fungicide. In bee pollen were found chlorothalonil at levels up to 99 ppm and the insecticides aldicarb, carbaryl, chlorpyrifos and imidacloprid, fungicides boscalid, captan and myclobutanil, and herbicide pendimethalin at 1 ppm levels. Almost all comb and foundation wax samples (98%) were contaminated with up to 204 and 94 ppm, respectively, of fluvalinate and coumaphos, and lower amounts of amitraz degradates and chlorothalonil, with an average of 6 pesticide detections per sample and a high of 39. There were fewer pesticides found in adults and brood except for those linked with bee kills by permethrin (20 ppm) and fipronil (3.1 ppm). CONCLUSIONS/SIGNIFICANCE: The 98 pesticides and metabolites detected in mixtures up to 214 ppm in bee pollen alone represents a remarkably high level for toxicants in the brood and adult food of this primary pollinator. This represents over half of the maximum individual pesticide incidences ever reported for apiaries. While exposure to many of these neurotoxicants elicits acute and sublethal reductions in honey bee fitness, the effects of these materials in combinations and their direct association with CCD or declining bee health remains to be determined

    Using GPS-enabled cell phones to track the travel patterns of adolescents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Few tools exist to directly measure the microsocial and physical environments of adolescents in circumstances where participatory observation is not practical or ethical. Yet measuring these environments is important as they are significantly associated with adolescent health-risk. For example, health-related behaviors such as cigarette smoking often occur in specific places where smoking may be relatively surreptitious.</p> <p>Results</p> <p>We assessed the feasibility of using GPS-enabled cell phones to track adolescent travel patterns and gather daily diary data. We enrolled 15 adolescent women from a clinic-based setting and asked them to carry the phones for 1 week. We found that these phones can accurately and reliably track participant locations, as well as record diary information on adolescent behaviors. Participants had variable paths extending beyond their immediate neighborhoods, and denied that GPS-tracking influenced their activity.</p> <p>Conclusion</p> <p>GPS-enabled cell phones offer a feasible and, in many ways, ideal modality of monitoring the location and travel patterns of adolescents. In addition, cell phones allow space- and time-specific interaction, probing, and intervention which significantly extends both research and health promotion beyond a clinical setting. Future studies can employ GPS-enabled cell phones to better understand adolescent environments, how they are associated with health-risk behaviors, and perhaps intervene to change health behavior.</p

    Effect of natalizumab on disease progression in secondary progressive multiple sclerosis (ASCEND). a phase 3, randomised, double-blind, placebo-controlled trial with an open-label extension

    Get PDF
    Background: Although several disease-modifying treatments are available for relapsing multiple sclerosis, treatment effects have been more modest in progressive multiple sclerosis and have been observed particularly in actively relapsing subgroups or those with lesion activity on imaging. We sought to assess whether natalizumab slows disease progression in secondary progressive multiple sclerosis, independent of relapses. Methods: ASCEND was a phase 3, randomised, double-blind, placebo-controlled trial (part 1) with an optional 2 year open-label extension (part 2). Enrolled patients aged 18–58 years were natalizumab-naive and had secondary progressive multiple sclerosis for 2 years or more, disability progression unrelated to relapses in the previous year, and Expanded Disability Status Scale (EDSS) scores of 3·0–6·5. In part 1, patients from 163 sites in 17 countries were randomly assigned (1:1) to receive 300 mg intravenous natalizumab or placebo every 4 weeks for 2 years. Patients were stratified by site and by EDSS score (3·0–5·5 vs 6·0–6·5). Patients completing part 1 could enrol in part 2, in which all patients received natalizumab every 4 weeks until the end of the study. Throughout both parts, patients and staff were masked to the treatment received in part 1. The primary outcome in part 1 was the proportion of patients with sustained disability progression, assessed by one or more of three measures: the EDSS, Timed 25-Foot Walk (T25FW), and 9-Hole Peg Test (9HPT). The primary outcome in part 2 was the incidence of adverse events and serious adverse events. Efficacy and safety analyses were done in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, number NCT01416181. Findings: Between Sept 13, 2011, and July 16, 2015, 889 patients were randomly assigned (n=440 to the natalizumab group, n=449 to the placebo group). In part 1, 195 (44%) of 439 natalizumab-treated patients and 214 (48%) of 448 placebo-treated patients had confirmed disability progression (odds ratio [OR] 0·86; 95% CI 0·66–1·13; p=0·287). No treatment effect was observed on the EDSS (OR 1·06, 95% CI 0·74–1·53; nominal p=0·753) or the T25FW (0·98, 0·74–1·30; nominal p=0·914) components of the primary outcome. However, natalizumab treatment reduced 9HPT progression (OR 0·56, 95% CI 0·40–0·80; nominal p=0·001). In part 1, 100 (22%) placebo-treated and 90 (20%) natalizumab-treated patients had serious adverse events. In part 2, 291 natalizumab-continuing patients and 274 natalizumab-naive patients received natalizumab (median follow-up 160 weeks [range 108–221]). Serious adverse events occurred in 39 (13%) patients continuing natalizumab and in 24 (9%) patients initiating natalizumab. Two deaths occurred in part 1, neither of which was considered related to study treatment. No progressive multifocal leukoencephalopathy occurred. Interpretation: Natalizumab treatment for secondary progressive multiple sclerosis did not reduce progression on the primary multicomponent disability endpoint in part 1, but it did reduce progression on its upper-limb component. Longer-term trials are needed to assess whether treatment of secondary progressive multiple sclerosis might produce benefits on additional disability components. Funding: Biogen

    Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema

    Get PDF
    Global pollinator declines have been attributed to habitat destruction, pesticide use, and climate change or some combination of these factors, and managed honey bees, Apis mellifera, are part of worldwide pollinator declines. Here we exposed honey bee colonies during three brood generations to sub-lethal doses of a widely used pesticide, imidacloprid, and then subsequently challenged newly emerged bees with the gut parasite, Nosema spp. The pesticide dosages used were below levels demonstrated to cause effects on longevity or foraging in adult honey bees. Nosema infections increased significantly in the bees from pesticide-treated hives when compared to bees from control hives demonstrating an indirect effect of pesticides on pathogen growth in honey bees. We clearly demonstrate an increase in pathogen growth within individual bees reared in colonies exposed to one of the most widely used pesticides worldwide, imidacloprid, at below levels considered harmful to bees. The finding that individual bees with undetectable levels of the target pesticide, after being reared in a sub-lethal pesticide environment within the colony, had higher Nosema is significant. Interactions between pesticides and pathogens could be a major contributor to increased mortality of honey bee colonies, including colony collapse disorder, and other pollinator declines worldwide

    Israeli Acute Paralysis Virus: Epidemiology, Pathogenesis and Implications for Honey Bee Health

    Get PDF
    Israeli acute paralysis virus (IAPV) is a widespread RNA virus of honey bees that has been linked with colony losses. Here we describe the transmission, prevalence, and genetic traits of this virus, along with host transcriptional responses to infections. Further, we present RNAi-based strategies for limiting an important mechanism used by IAPV to subvert host defenses. Our study shows that IAPV is established as a persistent infection in honey bee populations, likely enabled by both horizontal and vertical transmission pathways. The phenotypic differences in pathology among different strains of IAPV found globally may be due to high levels of standing genetic variation. Microarray profiles of host responses to IAPV infection revealed that mitochondrial function is the most significantly affected biological process, suggesting that viral infection causes significant disturbance in energy-related host processes. The expression of genes involved in immune pathways in adult bees indicates that IAPV infection triggers active immune responses. The evidence that silencing an IAPV-encoded putative suppressor of RNAi reduces IAPV replication suggests a functional assignment for a particular genomic region of IAPV and closely related viruses from the Family Dicistroviridae, and indicates a novel therapeutic strategy for limiting multiple honey bee viruses simultaneously and reducing colony losses due to viral diseases. We believe that the knowledge and insights gained from this study will provide a new platform for continuing studies of the IAPV–host interactions and have positive implications for disease management that will lead to mitigation of escalating honey bee colony losses worldwide
    corecore