16,681 research outputs found

    Mean-Variance and Expected Utility: The Borch Paradox

    Get PDF
    The model of rational decision-making in most of economics and statistics is expected utility theory (EU) axiomatised by von Neumann and Morgenstern, Savage and others. This is less the case, however, in financial economics and mathematical finance, where investment decisions are commonly based on the methods of mean-variance (MV) introduced in the 1950s by Markowitz. Under the MV framework, each available investment opportunity ("asset") or portfolio is represented in just two dimensions by the ex ante mean and standard deviation (μ,σ)(\mu,\sigma) of the financial return anticipated from that investment. Utility adherents consider that in general MV methods are logically incoherent. Most famously, Norwegian insurance theorist Borch presented a proof suggesting that two-dimensional MV indifference curves cannot represent the preferences of a rational investor (he claimed that MV indifference curves "do not exist"). This is known as Borch's paradox and gave rise to an important but generally little-known philosophical literature relating MV to EU. We examine the main early contributions to this literature, focussing on Borch's logic and the arguments by which it has been set aside.Comment: Published in at http://dx.doi.org/10.1214/12-STS408 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Robust Assignments via Ear Decompositions and Randomized Rounding

    Get PDF
    Many real-life planning problems require making a priori decisions before all parameters of the problem have been revealed. An important special case of such problem arises in scheduling problems, where a set of tasks needs to be assigned to the available set of machines or personnel (resources), in a way that all tasks have assigned resources, and no two tasks share the same resource. In its nominal form, the resulting computational problem becomes the \emph{assignment problem} on general bipartite graphs. This paper deals with a robust variant of the assignment problem modeling situations where certain edges in the corresponding graph are \emph{vulnerable} and may become unavailable after a solution has been chosen. The goal is to choose a minimum-cost collection of edges such that if any vulnerable edge becomes unavailable, the remaining part of the solution contains an assignment of all tasks. We present approximation results and hardness proofs for this type of problems, and establish several connections to well-known concepts from matching theory, robust optimization and LP-based techniques.Comment: Full version of ICALP 2016 pape
    • …
    corecore