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Abstract
Many real-life planning problems require making a priori decisions before all parameters of the
problem have been revealed. An important special case of such problem arises in scheduling and
transshipment problems, where a set of jobs needs to be assigned to the available set of machines
or personnel (resources), in a way that all jobs have assigned resources, and no two jobs share the
same resource. In its nominal form, the resulting computational problem becomes the assignment
problem.

This paper deals with the Robust Assignment Problem (RAP) which models situations in
which certain assignments are vulnerable and may become unavailable after the solution has
been chosen. The goal is to choose a minimum-cost collection of assignments (edges in the
corresponding bipartite graph) so that if any vulnerable edge becomes unavailable, the remaining
part of the solution contains an assignment of all jobs.

We develop algorithms and hardness results for RAP and establish several connections to
well-known concepts from matching theory, robust optimization, LP-based techniques and com-
binations thereof.
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1 Introduction

The need for incorporating system reliability into decision making has sprung wide-spread
interest in optimization models which incorporate data uncertainty in the last decades. The
latter trend has lead to the development of several new theories including the popular field of
Robust Optimization. In robust optimization the nominal optimization problem is equipped
with a set of scenarios, representing various possible states of nature that may occur after
the solution to the problem is chosen. The goal is to determine a solution that will perform
well (in terms of feasibility, or cost) in the worst case realization of the state of nature.

The Assignment Problem is one of the most fundamental optimization problems arising
in many reliability-sensitive systems. In its nominal form, the input consists of a set of
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nT tasks, a set of nR resources (with nT ≤ nR), and assignment costs ci,j representing the
cost associated with assigning resource i to task j. The set of allowed assignments can be
represented by a bipartite graph G := (R ∪̇T,E) where each resource i corresponds to a node
ri ∈ R, each task j corresponds to a node tj ∈ T , and the edge {ri, tj} is present in E if the
j-th task can be assigned to resource i. The goal is to find a matching M ⊆ E of minimal
cost that covers all nodes in T , i.e. a set of non-adjacent edges that is incident to every node
in T . In the following, a subset M satisfying that property is called an assignment.

The Robust Assignment Problem (RAP) is the natural robust counterpart of the assign-
ment problem and defined as follows1. An instance of RAP consists of an instance of the
nominal assignment problem, i.e. of a bipartite graph G = (R ∪̇T,E) representing admissible
assignments and a non-negative cost vector c ∈ RE

≥0, as well as a collection F ⊆ E of
vulnerable edges. Each f ∈ F induces a failure scenario that leads to a deletion of f from
G. The goal is to find a subset X ⊆ E of minimal cost with the property that, for every
vulnerable edge f ∈ F , the set X \ {f} contains an assignment of G.

Intuitively, RAP asks to choose a redundant assignment, namely one that contains a feasible
assignment, even when an arbitrary single vulnerable edge becomes unavailable. Therefore,
the robustness paradigm considered in this paper falls into the topic of redundancy-based
robustness – a well-motivated and widely studied approach (see e.g. [5, 23] for an overview
of different robustness concepts). Some of the problems that fall into this category include
the minimum k-edge connected spanning subgraph problem [12, 18] and the robust facility
location problem [25, 31, 9]. More recently, Adjiashvili, Stiller and Zenklusen [2] introduced
a robustness model called bulk-robustness, which combines the standard redundancy based
robustness approach with a non-uniform failure model. In its general form, a bulk robust
counterpart of a combinatorial optimization problem consists of an instance of the nominal
problem, as well as a collection of scenarios, each comprising an arbitrary set of resources that
may fail simultaneously. The goal is, as usual, to choose a minimum-cost set of resources that
contains a feasible solution, even when the resources in any single failure scenario become
unavailable. In the language of bulk-robustness, RAP is the bulk-robust assignment problem
restricted to the case of where each scenario is composed of a single edge.

In the remainder of this section we provide a few motivating applications for RAP,
establish some connections to related notions in matching theory and discuss results and
technical contributions.

1.1 Motivation
The most natural applications of RAP, and redundancy-based robust optimization in general,
emerge in situations where resources can not be easily made available on demand. In such
applications, any resource that is intended for use at a certain point in time must be reserved
at an earlier stage, and thus made available for potential deployment. Examples of such
applications range from construction of robust power transmission networks [21] to supply
chain management [32].

In a nutshell, redundancy-based models deal with the problem of choosing the optimal
set of (potentially unreliable) resources to reserve, in order to guarantee that the available
set of resources at the time of solution implementation, i.e. the reserved resources that did
not fail, contains a feasible solution in every scenario. While we believe that RAP can be a

1 Several other robust counterparts of the assignment problem have been considered in the literature
under the same, or similar names. We review these models in Section 2.
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useful model to incorporate robustness in any assignment model with up-front decisions of
the latter type, we bring hereafter a few concrete applications.

Staff Training. Large companies often employ intensive training programs for their employ-
ees, designed to adapt the available pool of skills to their dynamic needs. For example, large
software firms starting a new project involving new technologies, might need to train some
employees to use these technologies. It is natural to incorporate the incurred training costs
into the task assignment problem. The cost of assigning an employee to perform a given task
in the project corresponds to the cost to train the employee to perform this task.

In a more realistic scenario, some employee to task assignments might become unavailable
even if the employee were trained to perform the task. This type of vulnerability is very
common, and can be caused, e.g. by employee dissatisfaction from his task assignment, or by
unexpected inability to perform the task (due to injury or unavailability of equipment, etc.).
RAP is a suitable model for deciding on robust training programs for the project, where skill
sets of the employees allow for reassignments even if any single employee to task assignment
becomes unavailable.

Continuity of Service. In industries such as health care and consulting it is often desirable
to maintain very stable client to service provider relationships [7]. It is hence natural for a
service provider to model the resulting resource allocation problem as an assignment problem,
where an available pool of trained employees (nurses, consultants etc.) is matched to the set
of customers. In the nominal variant, the company might want to minimize the cost incurred
by the assignment, where the cost is computed as the total cost incurred by establishing all
relationships in the assignment (establishing such relationships incurs significant costs).

It is however common that certain established relationships go off track in the course of
a long interaction (e.g. due to customer or employee dissatisfaction). These relationships
correspond to vulnerabilities of individual assignments. With RAP it is possible to account
for such vulnerabilities by establishing a cost-effective set of relationships that, even if any
nominal interaction becomes unavailable, the organization can quickly adjust the assignment
to satisfy all clients.

1.2 Overview of results and techniques
This paper addresses the computational complexity of RAP. In particular, we present
approximation algorithms and hardness of approximation results. We justify the study of
approximation algorithms by showing that RAP is NP-hard even in very restricted variants.
Due to space constraints we omit technical proofs as well as details on the complexity results.

The assignment problem has a well-known natural interpretation as a bipartite matching
problem in the graph G = (R ∪̇T,E). It is hence also natural to view RAP as a robust
version of the bipartite matching problem: find a minimum-cost set of edges in M ⊆ E

such that for every f ∈ F , the set M \ {f} contains a matching incident to all nodes in T .
Furthermore, if |R| = |T |, the problem becomes a robust variant of the perfect matching
problem. We henceforth adopt this point of view, as it facilitates a clearer exposition of our
results, and highlights an inherent connection between RAP and matching-covered graphs, a
notion that we repeatedly use in our approximation algorithms.

The next statement shows that it suffices to consider RAP on balanced bipartite graphs,
implying that we can state the feasibility condition for RAP using perfect matchings.

ICALP 2016
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I Proposition 1. Any RAP instance can be efficiently transformed to an equivalent weighted
RAP instance with a balanced bipartite graph such that any α-approximation for the new
instance can be used to efficiently construct an α-approximation of the original instance for
all α ≥ 1.

It is important to note that the transformation in Proposition 1 leads to an instance on a
balanced bipartite graph that is equipped with a weighted cost function. Interpreting the
resulting instance as an unweighted one may destroy the preservation of the transformation’s
approximation quality, thus Proposition 1 can not be used as a black box reduction for the
unweighted case.

In the following, RAP refers to general instances of the robust assignment problem
on balanced bipartite graphs with weighted cost function, while card-RAP is used for the
unweighted version of RAP. We denote n = nT + nR and m = |E|.

We remark that feasibility of a given RAP instance can be efficiently verified as one only
needs to check, for each f ∈ F , whether the graph contains a perfect matching not using f .
The latter can be done using any polynomial algorithms for finding maximum matchings in
bipartite graphs.

1.2.1 Matching-Covered Graphs and Ear Decompositions
Our algorithmic results rely on a tight connection between RAP and matching-covered graphs,
a well-known notion in matching theory. A graph G = (V,E) is matching-covered if every
edge e ∈ E appears in some perfect matching of G.2

It turns out that inclusion-wise minimal solutions of any RAP instance are matching-
covered as the following proposition states.

I Proposition 2. A set X ⊆ E is an inclusion-wise minimal feasible solution to RAP if and
only if (R ∪̇T,X) is an inclusion-wise minimal non-empty graph with the properties of being
matching-covered and that every isolated edge e ∈ X is not vulnerable, i.e. e 6∈ F .

Proposition 2 provides a very useful characterization of minimal solutions of RAP, as it allows
us to use various results on matching-covered graphs in our algorithms for RAP. In particular,
it allows us to identify feasible subgraphs and augment them to feasible solutions for the
entire instance by adding structures that maintain the property of being matching-covered.
One particularly useful tool is an ear decomposition of a bipartite matching-covered graph,
i.e. a certain decomposition of G into edge-disjoint paths of odd length. In the following,
we denote by V [G] and E[G] the set of nodes and edges of a graph G, respectively. For two
graphs G and H we denote by G+H their union (V [G] ∪ V [H], E[G] ∪ E[H]]).

I Definition 3 (Ear Decomposition of a Bipartite Graph). Let H be a bipartite graph, and let
H ′ be a subgraph of H. An odd ear of H with respect to H ′ is a path P in H with an odd
number of edges and such that P and H ′ have exactly two nodes in common. Those two
nodes form the end points of P , and belong to different parts of the bipartition.

A bipartite ear decomposition is a sequence P0, P1, . . . , Pq of paths in H, such that:
(i) P0 = ({v1, v2}, {{v1, v2}}) is a graph composed of a single edge; (ii) H = P0 + · · ·+Pq; and
(iii)µfor every j = 1, . . . , q, the path Pj is an odd ear with respect to Hj−1 := P0 + · · ·+Pj−1.

2 The notion of matching-covered graphs is originally introduced for connected graphs. In this paper we
use this term also for disconnected graphs. Furthermore, note that some authors use synonymously the
notion 1-extendable or in the bipartite case elementary (cf. [28]).
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We exploit the following well-known connection between matching-covered bipartite
graphs and bipartite ear decompositions.

I Theorem 4 ([28, Thm. 4.1.6]). A bipartite graph is matching-covered if and only if it has
a bipartite ear decomposition.

1.2.2 Results for card-RAP
Theorem 4 allows us to prove the following results for card-RAP. An instance of RAP is called
uniform if every edge is vulnerable, i.e. if F = E.

I Theorem 5. card-RAP admits a polynomial 1.5-approximation algorithm in the uniform
case, and a 3-approximation algorithm in the general case.

Our algorithm starts by producing an ear decomposition of the input graph. Then, it
iteratively selects a certain subset of the edges to be part of the solution, by processing the
ears in the decomposition in the order given by the decomposition, and omitting the edges
corresponding to ears of length one.

We complement the latter algorithmic result by showing that card-RAP is NP-hard to
approximate within some constant δ > 1 even in the restricted case of a uniform scenario set,
as stated in the following theorem.

I Theorem 6. There exists a constant δ > 1, such that there is no polynomial δ-approximation
algorithm for the uniform card-RAP, unless P=NP.

Theorems 5 and 6 imply that the true approximability thresholds for uniform card-RAP
and card-RAP lie in the intervals [δ, 1.5] and [δ, 3], respectively.

To complete the complexity landscape of card-RAP we also consider the case of only two
vulnerable edges. This special case comprises the simplest variant of card-RAP that is not
equivalent to a standard matching problem3. In the following theorem we prove that already
this special case is NP-hard, thus drawing a sharp threshold for polynomial solvability of
card-RAP.

I Theorem 7. card-RAP is NP-hard even when restricted to instances with two vulnerable
edges, i.e. with F = {f1, f2}.

To the best of our knowledge, this is the first example of an NP-hard robust counterpart
of a polynomial optimization problem, with a constant number of vulnerable resources.4 To
prove Theorem 7 we first show NP-hardness of a problem of partitioning a graph into a cycle
containing a given node and a matching whose union covers all nodes, so as to minimize the
length of the cycle, a problem that might be interesting in its own right.

1.2.3 Results for RAP
Our main algorithmic result for RAP is a randomized O(logn)-approximation for the general
case, as stated hereafter.

3 Observe that the case of a single vulnerable edge F = {f} is solvable by reporting any minimum-cost
perfect matching in the graph (R ∪̇ T, E \ {f}) as a solution.

4 There are many examples of optimization problems that become NP-hard when the robust counterpart
is allowed to contain a constant number of scenarios (see e.g. [26]). In all such examples, however, each
scenario affects a non-constant number of resources.

ICALP 2016
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I Theorem 8. RAP admits a randomized polynomial O(logn)-approximation algorithm.

Our approximation algorithm for RAP builds upon our simple approximation algorithm
for card-RAP in that it also iteratively constructs a solution maintaining the invariant that
at any point in the algorithm, the edges selected so far form a matching-covered graph. It is
however unclear how to arrive at the desired approximation for RAP relying only on properties
of matching-covered graphs. We therefore combine the latter techniques with additional
tools from linear programming (LP) theory and randomized rounding. Concretely, we start
by solving an LP relaxation of RAP, derived from a natural integer linear programming (ILP)
formulation of the problem. The obtained fractional solution is used to guide an iterative
randomized procedure. In each iteration a fractional bipartite matching corresponding to
part of the fractional solution is selected. A decomposition of this fractional matching into
a convex combination of integral matchings is then used to randomly pick one matching,
and a carefully selected subset of this matching is added to the current solution. To bound
the quality it does not suffice to bound the number of iterations, or the expected number of
times an edge is part of a candidate matching. Instead we use a discharging argument that
assigns costs to nodes depending on the graph selected so far.

We complement our algorithmic results for RAP with hardness of approximation result
with the same asymptotic bound, as stated hereafter.

I Theorem 9. Provided that NP 6⊆ DTIME(nlog logn), the uniform RAP admits no c logn-
approximation for any c < 1. RAP unless P=NP.

2 Related work

Redundancy-based robustness is a paradigm that motivates many well studied problems,
including the minimum k-connected subgraph problem [18, 12, 30], survivable and robust
network design problems [24, 10, 2, 1], robust clustering problems [25, 31], robust spanner
problems [8, 15] and many more. All of the latter models bare a close resemblance to RAP:
they assume resources to be vulnerable and ask to find a minimum-cost set of resources that
contains a desired structure even in case any vulnerable resource, or set of resources, fails.

A relatively new approach to redundancy based robustness is the incorporation of non-
uniform uncertainty sets [2, 1]. RAP is seen as a robust model of this type, as we allow both
vulnerable and invulnerable edges in the same instance.

The study of robustness with respect to cost uncertainty was initially studied by Kouvelis
and Yu [26], and Yu and Yang [33]. For a survey we refer to Aissi, Bazgan and Vander-
pooten [4]. A closely related class of multi-budgeted problems has received considerable
attention (see e.g. [19] and references therein). The latter works include variants of the
related multi-objective matching problem.

Various variants of robust matching problems have been considered in the literature.
Hassin and Rubinstein [22], and Fujita, Kobayashi and Makino [17] study the following
notion of an α-robust matching. A perfect matching M in a weighted graph is α-robust (for
α ∈ (0, 1]), if for every p ≤ |M |, the p heaviest edges of the matching have total weight at
least α times the weight of a maximum weight matching of size p. Deineko and Woeginger [14]
showed that the min-max-robust assignment problem with a fixed number of scenarios is
equivalent to the exact perfect matching problem, a famous problem with unknown complexity
status. In the case of a variable number of scenarios the min-max-robust problem is NP-hard,
as was proved by Aissi, Bazgan and Vanderpooten [3]. Additional work on robust variants of
the matching problem include models with recovery [16], models with node failures [27], and
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the closely related matching interdiction problem [34]. Plesník [29] provided conditions under
which an r-regular graph remains perfectly matchable after removing r− 1 arbitrarily chosen
edges. Brigham, Harary, Violin and Yellen [6] and Cheng, Lesniak, Lipman and Liptak [11]
studied the minimum number of edges to be removed from a graph to arrive at a graph
without a perfect matching.

3 Approximation Algorithms for RAP

3.1 O(1)-Approximation for card-RAP
Our algorithm relies on an ear decomposition of the underlying bipartite graph. Similar
ideas using ear decompositions were successfully used to approximate various combinatorial
optimization problems including, among others, the minimum edge connected subgraph
problem and the path traveling salesman problem [12, 30]. Recall, that a balanced bipartite
graph admits an ear decomposition (which is by no means unique) if and only if it is
matching-covered.

As an initial pre-processing step, a given card-RAP instance consisting of G = (R ∪̇T,E)
and F is transformed into a balanced instance. For this, we introduce a set D of nR − nT
dummy task nodes, and connect each such node to all nodes from R. Let ED denote the set
of newly introduced edges, and let Gb = (R ∪̇(T ∪D), E ∪ ED). In a second step we remove
from Gb all dispensable edges, i.e. all edges not appearing in any perfect matching of Gb. This
way, we obtain a graph, that is, by definition, matching-covered. Note that the second step
can be implemented in polynomial time using any efficient algorithm for finding bipartite
matchings. Moreover, we remark that omitting dispensable edges clearly does not change the
underlying card-RAP instance, since such edges can be removed from any feasible solution
without breaking feasibility. In the following, we allow some abuse of notation and call the
new graph Gb as well. Next, we assume that G (and equivalently Gb) is feasible, i.e. there do
not exist any isolated edges. If an isolated edge exists the algorithm terminates and reports
that the instance is infeasible. Now let Gb = P0 + · · ·+ Pq be any ear decomposition of Gb
with the initial edge P0 not covering a dummy node from D. We call an ear Pj trivial if it is
not P0 and if it consists of a single edge. The next lemma shows that a feasible solution to
card-RAP can be obtained from the ear decomposition of Gb by skipping trivial ears.

I Lemma 10. Let J = {j ∈ [q] | Pj is a trivial ear}. Define G′b = P0 +
∑
i∈[q]\J Pi,

and X := E[G′b] \ ED. Then, the set X is a feasible solution to the card-RAP instance.
Furthermore, |X| ≤ 3nT .

Lemma 10 allows us to arrive at an approximation algorithm, summarized as Algorithm 1.

Algorithm 1 : O(1)-Approximation for card-RAP

Require: G = (R ∪̇T,E) and F ⊆ E.
Ensure: a feasible solution X to card-RAP on G and F
1: X ← ∅
2: Transform G into a balanced graph Gb and remove all dispensable edges
3: Compute an ear decomposition Gb = P0 + . . .+ Pq
4: X ← P0 ∪

⋃
{E[Pj ] | Pj is not trivial, j = 1, . . . , q}

5: return X

Proof of Theorem 5. According to [13], an ear decomposition of a matching-covered graph
can be computed in polynomial time. Furthermore, all other computations can also be

ICALP 2016
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implemented efficiently, such that the running time of Algorithm 1 is polynomial. From
Lemma 10, it follows that the set X returned by Algorithm 1 is feasible. For F = E, any
feasible solution must have at least two edges incident to any node from the set T . Hence,
OPT ≥ 2nT . Since |X| ≤ 3nT , the approximation guarantee is indeed 1.5. If F ( E, then G
can contain a perfect matching not including any edge from F . Thus, we can use OPT ≥ nT
yielding an approximation factor of 3. J

3.2 O(log n)-Approximation for RAP
In this section we provide a polynomial O(logn)-approximation algorithm for RAP, thus
proving Theorem 8. Again, we assume that the RAP instance is feasible. For a clean
presentation, we first describe an algorithm for the uniform case F = E and then explain
how it can be extended to the non-uniform case.

Our algorithm is based on an LP-rounding procedure that works with a relaxation of
the integer linear formulation of RAP, that is defined as follows. Let G = (R ∪̇T,E) be
a balanced, bipartite graph and let c ∈ RE

≥0 be a non-negative cost vector. Moreover, let
PG ⊆ RE denote the perfect matching polytope associated with G (i. e. PG is the convex
hull of all incidence vectors of perfect matchings in G). A standard ILP formulation of
RAP contains the following variables: (i) x−f ∈ {0, 1}E representing a perfect matching in
G− f := (R ∪̇T,E \ {f}), for all f ∈ F , and (ii) y ∈ {0, 1}E encoding a feasible solution to
RAP. Then, RAP can be modeled as an ILP as follows.

min c>y

s. t. x−f ∈ PG ∩ {x ∈ RE | xf = 0}, for each f ∈ F,
y ≥ x−f , for each f ∈ F,

x−f ∈ {0, 1}E , for each f ∈ F,
y ∈ {0, 1}E

(ILP)

The LP-relaxation (LP) is obtained by relaxing all integrality constraints in (ILP). To keep
notation short, we let x ∈

(
RE
)E be the vector with parts x−f , f ∈ F . It is straightforward

to verify that integer solutions to (ILP) coincide with feasible solutions to the RAP instance.
In the following, we will denote, by χS ∈ {0, 1}E , the incidence vector of a subset S ⊆ E.

Now, let (x, y) be a fractional solution to (LP). We describe hereafter a rounding procedure
that yields an approximation for RAP. Consider some edge f ∈ F . Since x−f is contained
in PG ∩ {x ∈ RE | xf = 0}, there exist positive scalars λ−f1 , · · · , λ−fk with

∑
i∈[k] λ

−f
i = 1,

and perfect matchings M−f1 , · · · ,M−fk in G − f such that x−f =
∑
i∈[k] λ

−f
i χM

−f
i . By

Caratheodory’s theorem, there is a decomposition of the latter type with k bounded by
O (m) = O

(
n2). Furthermore given x−f , such a decomposition can be computed in polyno-

mial time using polyhedral techniques [20, Thm. 6.5.11].
Our algorithm performs several iterations of randomized rounding based on the latter

decomposition of fractional matchings. More precisely, at each iteration, an infeasible set
X ⊆ E of edges, that was chosen so far, is augmented with an additional set M of edges
chosen randomly as follows. First, an arbitrary edge f is chosen from E among all edges
not yet covered by X, i.e. among all e′ ∈ E such that the edge set X selected so far contain
no perfect matching that does not include e′. Next, a decomposition of the vector x−f as a
convex combination of perfect matchings is computed, as above. This decomposition is then
used to select a single perfect matching M̄ from {M−f1 , · · · ,M−fk } randomly, where M−fi is
chosen with probability λ−fi for all i ∈ [k]. Finally, the augmenting set M ⊆ M̄ is chosen
to contain all edges of M̄ connecting distinct connected components of X. The edges of M
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are added to X and the algorithm proceeds to the next iteration. The algorithm terminates
when X is a feasible solution. A summary of the algorithm is presented as Algorithm 2.

To prove the correctness of the algorithm we resort again to properties of matching-covered
graphs. Concretely, as a main ingredient of the proof of Lemma 12, which states a useful
structural property of intermediate solutions in the algorithm, we use the following classic
result.

Algorithm 2 : Randomized O(logn)-Approximation for RAP

Require: G = (R ∪̇T,E) with |R| = |T |, and c ∈ RE
≥0.

Ensure: A feasible solution X to RAP on G with F = E and cost vector c.
1: Solve (LP) to obtain an optimal solution (x, y)
2: X ← ∅
3: while X is infeasible do
4: Select an edge f ∈ F such that X \ {f} contains no perfect matching
5: Compute a decomposition of x−f as x−f =

∑k
i=1 λ

−f
i χM

−f
i and select one matching

M̄ ∈ {M−fi | i ∈ [k]} with Pr
[
M̄ = M−fi

]
= λ−fi for all i ∈ [k]

6: Add to X all edges from M̄ that connect distinct connected components in (R ∪̇T,X)
7: end while
8: return X

I Theorem 11 ([28, Thm. 4.1.1., p. 122]). A connected bipartite graph H = (U ∪̇W,E)
with |U ∪̇W | ≥ 4 is matching-covered if and only if for any u ∈ U and w ∈ W the graph
H − {u} − {w} has a perfect matching.

I Lemma 12. Let X be a non-empty set of edges already selected in an arbitrary iteration
of Algorithm 2. Then, the graph G[X] := (R ∪̇T,X) is matching-covered.

Proof. As X is assumed to be non-empty, X contains at least one perfect matching of G.
Thus, G[X] does not have isolated nodes.

Now, let S ⊆ R ∪̇T be the nodes of some connected component of G[X]. It suffices to
prove that the graph (S,X[S]), with X[S] := {e ∈ X | e = {s1, s2}, for some s1, s2 ∈ S}, is
matching-covered. For |S| = 2, X[S] contains exactly one edge that belongs to a perfect
matching in X. Thus, the claim is proved.

Next, assume that |S| > 2. To prove that (S,X[S]) is matching-covered, we proceed
by induction on the number of iterations in Algorithm 2. In the first iteration, a perfect
matching is added to X in Step 6, thus the claim holds in that case.

Now, let X ′ ⊆ X be the set of edges selected until the beginning of the iteration preceding
the current iteration. By the induction hypothesis, we can assume that every connected
component of (R ∪̇T,X ′) is matching-covered.

To prove the claim we need to show that every edge e ∈ X[S] is contained in some perfect
matching of S. If e ∈ X ′, this claim holds by the inductive hypothesis, and due to X ′ ⊆ X.
In case that e 6∈ X ′, we have that e ∈ M̄ , where M̄ is selected in Step 5 in the current
iteration. This means that e connects nodes from two distinct connected components of
(R ∪̇T,X ′).

Now, pick any cycle C ⊆ X in G[X] containing e with a minimum number of edges from
M̄ . Let D1, · · · , Dl ⊆ R ∪̇T be the components in (R ∪̇T,X ′) that have edges in C. From
minimality of |C ∩ M̄ | it follows that C is a simple cycle (i.e. each node is contained in at
most two of its edges) and that each component Dj , j = 1, · · · , l contains exactly two nodes
incident to the cycle. This cycle can now be used to demonstrate the existence of the desired
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perfect matching M ′ as follows. First, include in M ′ all edges in C ∩ M̄ . Then, in every
component Dj for j = 1, · · · , l pick a matching covering all nodes, except the two nodes
incident to the cycle C. Due to Theorem 11, such a matching exists since each component Dj

is matching-covered. The matching chosen so far covers exactly the nodes in D1 ∪ · · · ∪Dl.
Finally, pick any matching covering all other components of (R ∪̇T,X ′) that are not incident
to C. This matching exists, since again, (R ∪̇T,X ′) is matching-covered. The result is a
perfect matching in G[X] containing e, which completes the proof. J

Lemma 12 guarantees that at every stage in the algorithm, the only edges not yet covered
by the current solution X are the isolated edges of G[X]. Now, since at an iteration where
an uncovered edge f is chosen in Step 4, the set M must contain two edges distinct from f ,
that are incident to the endpoints of f , the edge f is guaranteed to be covered in the end
of this iteration. This immediately implies that the algorithm terminates with a feasible
solution after at most |E| iterations. It hence remains to bound the expected cost of the
solution returned by Algorithm 2.

I Theorem 13. The expected cost of the solution returned by Algorithm 2 is O(logn) ·OPT,
where OPT is the optimal solution value for the RAP instance.

Proof. The feasibility of the obtained solution and the bound on the running time are
guaranteed by Lemma 12.

For a set Q ⊆ E of edges we denote by cLP(Q) the contribution of the edges in Q to the
LP cost, i.e. cLP(Q) =

∑
e∈Q ceye. For a node v ∈ R ∪̇T , we denote by δ(v) ⊆ E the set of

edges incident to v. To bound the approximation guarantee we bound the expectation of
the ratio c(X)/cLP(E). Since the LP is a relaxation of the problem we have cLP(E) ≤ OPT.
Thus, this ratio is a valid bound on the approximation guarantee.

To obtain the bound we design a scheme that charges every selected edge in any stage of
the algorithm to one of its endpoints. We then show that the expected cost charged to any
node v ∈ V is bounded by O(logn) times the fractional cost cLP(δ(v)) associated with the
node. This then implies that the expected cost of all edges added by the algorithm is at most

O(logn) ·
∑

v∈R ∪̇T

cLP(δ(v)) ≤ O(logn) · OPT,

where the last inequality follows from linearity of expectation, cLP(E) ≤ OPT and cLP(E) =
1
2
∑
v∈R ∪̇T cLP(δ(v)).
We describe next how the costs of the selected edges are charged to the nodes of the

graph. Let X̄ ⊆ E be the set of edges returned by the algorithm. Formally, with each node
v ∈ R ∪̇T we associate a collection of edges Rv ⊆ X̄ such that

⋃
v∈R ∪̇T Rv = X̄ and such

that c(Rv) is bounded by O(logn) times the fractional load at v in expectation.
The sets Rv are constructed as follows. In the beginning Rv = ∅ for all v ∈ R ∪̇T . Let X

be the set of edges selected so far by the algorithm and let M ⊆ E \X be the set of edges
selected to be added to X in Step 6 of the current iteration. At this stage, the sets Rv might
already contain some edges. We describe how these sets change as a result of the selection
of M . Consider an edge f = {r, t} ∈ M . Recall that the algorithm only includes edges in
the solution if they connect different connected components in (R ∪̇T,X). Thus, r and t
lie in different connected components. Let Dr and Dt be the node sets of the connected
components to which r and t belong, respectively, and assume without loss of generality that
|Dr| ≤ |Dt|. Then, f is charged to r, i.e. f is included in Rr. In other words, an edge added
by the algorithm in any iteration is charged to the node contained in the smaller connected
component, with ties broken arbitrarily.
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It is obvious that the latter scheme charges all edges in X̄ to some nodes, such that⋃
v∈V Rv = X̄ holds in the end of the last iteration. It remains to analyze the quantity c(Rv)

for a single node v ∈ R ∪̇T . The bound on c(X̄) will then follow from linearity of expectation
and the previous discussion. To arrive at the desired bound it suffices to make the following
two observations.

First, at any time, if an edge is charged to v, its expected cost is at most cLP(δ(v)).
Indeed, recall that the edges in M come from a perfect matching chosen at random from the
decomposition of some fractional perfect matching x−f in the graph (this x−f corresponds
to the edge f chosen in Step 4 in the current iteration). Let this decomposition be

x−f =
∑
i∈[k]

λ−fi χM−f
i
.

The distribution over the integral matchings defining x−f induces a distribution over the
edges incident to v: each edge e ∈ δ(v) is contained in the perfect matching with a probability
pe ∈ [0, 1] given by

pe =
∑

i∈[k] : e∈M−f
i

λ−fi = x−fe .

Since x−fe ≤ ye for all e ∈ E we have that the expected cost of the edge charged to v is at
most

∑
e∈δ(v) cex

−f
e ≤ cLP(δ(v)), proving the first property.

The second observation concerns the number of times the node v is charged in the course
of the algorithm. Consider any iteration in which some edge was charged to v, and let Dv be
the nodes in the component of v in the beginning of the iteration. Since we always charge an
edge to the node in the smaller component, and since charged edges always merge connected
components, the size of the connected component containing v in the end of the iteration is
at least 2|Dv|. Since the graph only contains n nodes, this doubling can only happen at most
logn times.

We conclude that c(Rv) is, in expectation, indeed at most O(logn)cLP (δ(v)), which
concludes the proof of the theorem. J

Lemma 12 and Theorem 13 imply the correctness of Theorem 8 for the uniform case.
The generalization to the non-uniform case is explained in the proof of Theorem 8, which we
bring next.

Proof of Theorem 8. It remains to show how to treat the case F 6= E. For this, we provide
a transformation to reduce such an instance to a uniform instance by losing only a factor of
2 in the approximation guarantee.

The transformation first adds to the graph one parallel edge ē for every e 6∈ F . Let G′
be the obtained graph. The new set of vulnerable edges is set to F ′ = E[G′]. Solutions for
the two RAP instances are in obvious correspondence: A solution X ⊆ E[G] to the original
instance can be transformed to a solution for the new instance of at most double the cost by
taking X ′ = X ∪ {ē | e ∈ X \ F}. Conversely, a solution X ′ for the new instance can be
transformed to a solution for the new instance with the same, or better cost, by choosing
X = X ′ ∩ E[G].

Let OPT′ denote the optimal solution value of the transformed uniform instance. Our
O(logn)-approximation algorithm for the general case proceeds by first transforming the
instance to a uniform instance of RAP, as above, then invoking Algorithm 2 to obtain the
set X ′, having expected cost at most O(logn)OPT′ = O(logn)OPT and then returning
X = X ′ ∩ E[G]. J
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We conclude this section by arguing why simpler randomized rounding techniques, for
instance, ones that lead to logarithmic approximation to many covering problems, are unlikely
to lead to a similar result for RAP. The reason for this is that there does not seem to be
a simple way to obtain a compact set cover-type representation of RAP without losing a
super-logarithmic factor in the approximation guarantee. One natural attempt could be to
consider every vulnerable edge f ∈ F as an element that needs to be covered, and every
possible perfect matching M ⊆ E that does not contain f , a covering set that covers the
edge f (and all other edges in F \M). The cost of the covering set is simply the sum of the
costs of edges in the corresponding perfect matching. Unfortunately, it is easy to come up
with examples in which the optimal solution value in the latter set covering model has cost
Ω(n)OPT. Such instances can be constructed, for example by choosing an instance, such
that any feasible solution must have some nodes with very high degree, while an optimal
solution has cost O(n).

4 Conclusion and Future Work

This paper studies a novel practically relevant robust variant of the assignment problem
(RAP). We showed tight connections between RAP and classical notions in matching theory,
including matching-covered graphs and ear decompositions, and used these connections to
obtain asymptotically tight approximation results for RAP. In our approximation algorithm
for the general variant of RAP we combined classical results for matching-covered graphs
with LP randomized rounding techniques.

Some ongoing and future work includes the following lines of research. Study a version of
RAP with node failures, or with a combination of node and edge failures. This problem has
many potential applications beyond the ones listed here. Study the variant of RAP where
each scenario consists of at most k edges, for some input parameter k > 1. This paper treats
the case k = 1. Besides, it is interesting to study the complexity of RAP in general graphs.
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