24 research outputs found

    A Rare Case of Metastases from a High-grade Astrocytoma to the Pleura, Bones, and Liver within Six Months of Diagnosis

    Get PDF
    High grade astrocytomas such as anaplastic astrocytoma and glioblastoma multiforme are aggressive central nervous system malignancies with a poor prognosis. Due to shortened survival times, their devastating effects are usually localized intracranially and rarely metastasize outside of the central nervous system. When metastases occur, they usually present in patients with longer survival times and they typically coincide with a primary site recurrence. We present a rare case of metastases from a high-grade astrocytoma/glioblastoma to the pleura, bones and liver within six months of diagnosis, without primary site recurrence

    Expression of poly-ADP-ribose polymerase (PARP) in endometrial adenocarcinoma: Prognostic potential

    Get PDF
    © 2020 Background: In the United States endometrial carcinoma is the most common female gynecologic malignancy. An average of more than 60,000 new cases of endometrial carcinomas have been diagnosed yearly over the past 5 years, with a higher incidence occurring in the central Appalachian states of Ohio and West Virginia. In the U.S., the national average of newly diagnosed endometrial carcinomas is 26.8 in every 100,000 women, while in the states of Ohio and West Virginia the average is 30.5 and 31.1 in every 100,000 women, respectively. This notable increase in the incidence of endometrial carcinomas may be due a variety of elevated risk factors including but not limited to: tobacco use, obesity, and genetic predisposition of the predominant demographic. The American Cancer Society estimates that approximately 55,000 new cases of endometrial carcinoma will be diagnosed in 2020 yet, this disease is widely considered understudied and under-represented in mainstream cancer research circles. Methods: The aim of this study was to quantitate the co-expression of two DNA repair proteins poly-ADP-ribose polymerase 1 and 2 (Parp-1 and Parp-2) by enzyme- linked immuno-sorbent assay (ELISA) in 60 endometrioid endometrial tumor samples and compare their expression to matched non-malignant endometrial tissue from the same corresponding donors from central Appalachia. Results: We found that Parp-1 was significantly overexpressed in endometrial carcinoma relative to corresponding normal tissue. This overexpression implicates Parp inhibition therapy as a possible treatment for the disease. Our results also found a protective effect of native Parp-2 expression in non-malignant endometrial tissue with each 1 ng/mL increase in PARP-2 concentration in normal tissue was associated with a 10 % reduction in the hazard of tumor progression (HR = 0.90; p = 0.039) and a 21 % reduction in the hazard of death (HR = 0.79; p = 0.044). Conclusions: This study demonstrated the over-expression of the druggable target Parp-1 in endometrial adenocarcinoma and observed a strong negative correlation of native Parp-2 expression and disease progression via the quantification of the Parp proteins using enzyme- linked immuno-sorbent assay (ELISA) assays

    Minimally manipulative method for the expansion of human bone marrow mesenchymal stem cells to treat osseous defects

    Get PDF
    Copyright © 2019 Hamerly, Tweedell, Hritzo, Nyasembe, Tekwani, Nanayakkara, Walker and Dinglasan. Malaria is a major global health threat, with nearly half the world\u27s population at risk of infection. Given the recently described delayed clearance of parasites by artemisinincombined therapies, new antimalarials are needed to facilitate the global effort toward elimination and eradication. NPC1161 is an 8-aminoquinoline that is derived from primaquine with an improved therapeutic profile compared to the parent compound. The (R)-(-) enantiomer (NPC1161B) has a lower effective dose that results in decreased toxic side effects such as hemolysis compared to the (S)-(+)-enantiomer, making it a promising compound for consideration for clinical development. We explored the effect of NPC1161B on Plasmodium falciparum oocyst and sporozoite development to evaluate its potential transmission-blocking activity viz. its ability to cure mosquitoes of an ongoing infection. When mosquitoes were fed NPC1161B 4 days after P. falciparum infection, we observed that total oocyst numbers were not affected by NPC1161B treatment. However, the sporozoite production capacity of the oocysts was impaired, and salivary gland sporozoite infections were completely blocked, rendering the mosquitoes non-infectious. Importantly, NPC1161B did not require prior liver metabolism for its efficacy as is required in mammalian systems, suggesting that an alternative metabolite is produced in the mosquito that is active against the parasite. We performed liquid chromatography-mass spectrometry (LC-MS)/MS analysis of methanol extracts from the midguts of mosquitoes fed on an NPC1161B (434.15 m/z)-treated blood meal and identified a compound with a mass of 520.2 m/z, likely a conjugate of NPC1161B or an oxidized metabolite. These findings establish NPC1161B, and potentially its metabolites, as transmission-blocking candidates for the treatment of P. falciparum

    Cancer Stem Cell Chemotherapeutics Assay for Prospective Treatment of Recurrent Glioblastoma and Progressive Anaplastic Glioma: A Single-Institution Case Series

    Get PDF
    © 2020 BACKGROUND: Chemotherapy-resistant cancer stem cells (CSC) may lead to tumor recurrence in glioblastoma (GBM). The poor prognosis of this disease emphasizes the critical need for developing a treatment stratification system to improve outcomes through personalized medicine. METHODS: We present a case series of 12 GBM and 2 progressive anaplastic glioma cases from a single Institution prospectively treated utilizing a CSC chemotherapeutics assay (ChemoID) guided report. All patients were eligible to receive a stereotactic biopsy and thus undergo ChemoID testing. We selected one of the most effective treatments based on the ChemoID assay report from a panel of FDA approved chemotherapy as monotherapy or their combinations for our patients. Patients were evaluated by MRI scans and response was assessed according to RANO 1.1 criteria. RESULTS: Of the 14 cases reviewed, the median age of our patient cohort was 49 years (21–63). We observed 6 complete responses (CR) 43%, 6 partial responses (PR) 43%, and 2 progressive diseases (PD) 14%. Patients treated with ChemoID assay-directed therapy, in combination with other modality of treatment (RT, LITT), had a longer median overall survival (OS) of 13.3 months (5.4-NA), compared to the historical median OS of 9.0 months (8.0–10.8 months) previously reported. Notably, patients with recurrent GBM or progressive high-grade glioma treated with assay-guided therapy had a 57% probability to survive at 12 months, compared to the 27% historical probability of survival observed in previous studies. CONCLUSIONS: The results presented here suggest that the ChemoID Assay has the potential to stratify individualized chemotherapy choices to improve recurrent and progressive high-grade glioma patient survival. Importance of the Study: Glioblastoma (GBM) and progressive anaplastic glioma are the most aggressive brain tumor in adults and their prognosis is very poor even if treated with the standard of care chemoradiation Stupp\u27s protocol. Recent knowledge pointed out that current treatments often fail to successfully target cancer stem cells (CSCs) that are responsible for therapy resistance and recurrence of these malignant tumors. ChemoID is the first and only CLIA (clinical laboratory improvements amendment) -certified and CAP (College of American Pathologists) -accredited chemotherapeutic assay currently available in oncology clinics that examines patient\u27s derived CSCs susceptibility to conventional FDA (Food and Drugs Administration) -approved drugs. In this study we observed that although the majority of our patients (71.5%) presented with unfavorable prognostic predictors (wild type IDH-1/2 and unmethylated MGMT promoter), patients treated with ChemoID assay-directed therapy had an overall response rate of 86% and increased median OS of 13.3 months compared to the historical median OS of 9.1 months (8.1–10.1 months) previously reported [1] suggesting that the ChemoID assay may be beneficial in personalizing treatment strategies

    Cancer Stem Cell Assay-Guided Chemotherapy Improves Survival of Patients With Recurrent Glioblastoma in a Randomized Trial

    Get PDF
    Therapy-resistant cancer stem cells (CSCs) contribute to the poor clinical outcomes of patients with recurrent glioblastoma (rGBM) who fail standard of care (SOC) therapy. ChemoID is a clinically validated assay for identifying CSC-targeted cytotoxic therapies in solid tumors. In a randomized clinical trial (NCT03632135), the ChemoID assay, a personalized approach for selecting the most effective treatment from FDA-approved chemotherapies, improves the survival of patients with rGBM (2016 WHO classification) over physician-chosen chemotherapy. In the ChemoID assay-guided group, median survival is 12.5 months (95% confidence interval [CI], 10.2-14.7) compared with 9 months (95% CI, 4.2-13.8) in the physician-choice group (p = 0.010) as per interim efficacy analysis. The ChemoID assay-guided group has a significantly lower risk of death (hazard ratio [HR] = 0.44; 95% CI, 0.24-0.81; p = 0.008). Results of this study offer a promising way to provide more affordable treatment for patients with rGBM in lower socioeconomic groups in the US and around the world

    Minimally Manipulative Method for the Expansion of Human Bone Marrow Mesenchymal Stem Cells to Treat Osseous Defects

    Get PDF
    Lack of standardization of clinically compliant culture protocols of mesenchymal stem cells for re-implantation in humans have hindered clinical progress in the field of tissue regeneration to repair maxillofacial and orthopedic defects. The goal of this study was to establish a clinically relevant osteogenic protocol for collection and expansion of autologous stem cells to be used at Marshall University for re-implantation and repair of maxillofacial and orthopedic conditions. Human bone marrow (hBM) samples were collected from patients undergoing intramedullary nail fixation for closed femoral fractures. hBM mesenchymal cells were expanded by growing them first in Petri dishes for two weeks, followed by a week of culture using Perfecta 3D Hanging Drop Plates®. Various scaffold materials were tested and analyzed for cellular integration, vitality, and differentiation capacity of harvested hBM-MSCs including: 60/40 blend of hydroxyapatite biomatrix; Acellular bone composite discs; Allowash®, cancellous bone cubes; PLGA (poly lactic-co-glycolic acid); and Woven chitin derived fiber. We found that the 3D spheroid culture allowed production of hBM mesenchymal cells that retained osteoblast differentiation capacity over a monolayer culture of hBM-MSCs without the need to use chemical or hormonal modulation. We also observed that hydroxyapatite and Allowash cancellous bone scaffolds allowed better cell integration and viability properties as compared to other materials tested in this study. In conclusion, the multimodal culture methodology we developed creates actively differentiating stem-cell spheroids that can then be readily utilized in clinical practices to improve the regeneration of tissues of the head and the body

    High-Fat Diet Induces Fibrosis in Mice Lacking CYP2A5 and PPARa: A New Model for Steatohepatitis-Associated Fibrosis

    No full text
    Obesity is linked to nonalcoholic steatohepatitis. Peroxisome proliferator-activated receptor-a (PPARa) regulates lipid metabolism. Cytochrome P-450 2A5 (CYP2A5) is a potential antioxidant and CYP2A5 induction by ethanol is CYP2E1 dependent. High-fat diet (HFD)-induced obesity and steatosis are more severe in CYP2A5 knockout (cyp2a5 -/- ) mice than in wild-type mice although PPARa is elevated in cyp2a5 -/- mice. To examine why the upregulated PPARa failed to prevent the enhanced steatosis in cyp2a5 -/- mice, we abrogate the upregulated PPARa in cyp2a5 -/- mice by cross-breeding cyp2a5 -/- mice with PPARa knockout (ppara-/- ) mice to create ppara-/- /cyp2a5 -/- mice. The ppara-/- /cyp2a5 -/- mice, ppara-/- mice, and cyp2a5 -/- mice were fed HFD to induce steatosis. After HFD feeding, more severe steatosis was developed in ppara-/- /cyp2a5 -/- mice than in ppara-/- mice and cyp2a5 -/- mice. The ppara-/- /cyp2a5 -/- mice and ppara-/- mice exhibited comparable and impaired lipid metabolism. Elevated serum alanine transaminase and liver interleukin-1β, liver inflammatory cell infiltration, and foci of hepatocellular ballooning were observed in ppara-/- /cyp2a5 -/- mice but not in ppara-/- mice and cyp2a5 -/- mice. In ppara-/- /cyp2a5 -/- mice, although redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 and its target antioxidant genes were upregulated as a compensation, thioredoxin was suppressed, and phosphorylation of JNK and formation of nitrotyrosine adduct were increased. Liver glutathione was decreased, and lipid peroxidation was increased. Interestingly, inflammation and fibrosis were all observed within the clusters of lipid droplets, and these lipid droplet clusters were all located inside the area with CYP2E1-positive staining. These results suggest that HFD-induced fibrosis in ppara-/- /cyp2a5 -/- mice is associated with steatosis, and CYP2A5 interacts with PPARa to participate in regulating steatohepatitis-associated fibrosis

    Carbohydrate-Restricted Diet: A Successful Strategy for Short-Term Management in Youth with Severe Obesity-An Observational Study

    No full text
    Background: Obesity affects ∼20% of children in the United States and reports of successful dietary treatment are lacking. This study aimed to determine the change in body weight in severely obese youth after carbohydrate-restricted dietary intervention. Methods: This single-center study of a carbohydrate-restricted diet (≤30 grams per day), with unlimited calories, fat, and protein for 3-4 months, examined two groups of severely obese youth of ages 5-18 years: Group A, retrospectively reviewed charts of severely obese youth referred to the Pediatric Obesity Clinic at Hoops Family Children\u27s Hospital and the Ambulatory Division of Marshall Pediatrics, Marshall University School of Medicine, in Huntington, WV, between July 1, 2014 and June 30, 2017 (n = 130), and Group B, prospective participants, referred between July 1, 2018 and December 31, 2018, followed with laboratory studies pre- and postdietary intervention (n = 8). Results: In Group A, 310 participants began the diet, 130 (42%) returned after 3-4 months. Group B had 14 enrollees who began the diet, and 8 followed up at 3-4 months (57%). Girls compared with boys were more likely to complete the diet (P = 0.02). Participants \u3c12 years age were almost twice as likely to complete the diet compared with those 12-18 years (64% vs. 36%, P \u3c 0.01); however, the older group subjects who completed the diet had the same percentage of weight loss compared with those \u3c12 years (6.9% vs. 6.9%). Group A had reductions in weight of 5.1 kg (P \u3c 0.001), body mass index (BMI) 2.5 kg/m2 (P \u3c 0.001), and percentage weight loss 6.9% (P \u3c 0.001). Group B had reductions in weight 9.6 kg (P \u3c 0.01), BMI 4 kg/m2 (P \u3c 0.01), and percentage weight loss 9% (P \u3c 0.01). In addition, participants had significant reductions of fasting serum insulin (P \u3c 0.01), triglycerides (P \u3c 0.01), and 20-hydroxyeicosatetraenoic acid (P \u3c 0.01). Conclusions: This study demonstrated a carbohydrate-restricted diet, utilized short term, effectively reduced weight in a large percentage of severely obese youth, and can be replicated in a busy primary care office
    corecore