303 research outputs found

    Distribution of the organic matter in the channel-levees systems of the Congo mud-rich deep-sea fan (West Africa). Implication for deep offshore petroleum source rocks and global carbon cycle

    Get PDF
    International audienceThe Corinth Rift is superimposed on the Hellenic nappe stack that formed at the expense of the Apulian continental crust above the subducting African slab. Extension started in the Pliocene and the major steep normal faults that control the geometry of the present-day rift were born very recently, some 600 kyr ago only. They root into a shallow-dipping zone of microseismicity recorded near the base of the upper crust. The significance of this seismogenic zone is debated. Considering the northward dip of the zone of microseismicity, the depth of microearthquakes and their focal mechanisms, we observe a strong similarity with the northern Cycladic detachments in terms of expected pressure, temperature conditions and kinematics. We herein show (1) that the formation of the Corinth Rift can be considered a part of a continuum of extension that started some 30–35 Ma in the Aegean and that was recently localised in a more restricted area, (2) that the present-day structure and kinematics of the Corinth Rift can be explained with a series of decollements relayed by steeper ramps that altogether formed a mechanically weak, crustal-scale detachment, and (3) that the deformation, fluid behaviour and metamorphic features seen in the northern Cycladic metamorphic core complexes can be good analogues of the processes at work below the Corinth Rift

    Late Glacial to Preboreal sea-level rise recorded by the RhĂŽne deltaic system (NW Mediterranean)

    No full text
    International audienceA unique late Glacial–Preboreal record of changes in sea-level and sediment fluxes originating from the Alps is recorded in the Rhîne subaqueous delta in the Western Mediterranean Sea. The compilation of detailed bathymetric charts, together with high-resolution seismic profiles and long cores, reveals the detailed architecture of several sediment lobes, related to periods of decreased sea-level rise and/or increased sediment flux. They are situated along the retreat path of the Rhîne distributaries, from the shelf edge and canyon heads up to the modern coastline. They form transgressive backstepping parasequences across the shelf, the late Holocene (highstand) deltas being confined to the inner shelf. The most prominent feature is an elongated paleo-shoreface/deltaic system, with an uppermost sandy fraction remolded into subaqueous dunes. A long piston core into the bottomsets of this prograding unit allows precise dating of this ancient deltaic system. In seismic data, it displays aggradation, starting at not, vert, similar 15 cal kyr BP, followed by progradation initiated during the first phase of the Younger Dryas, a period of reduced sea-level rise or stillstand. The delta kept pace with resumed sea-level rise during the Preboreal (which is estimated at about 1 cm/yr), as a result of increased sediment supply from the Alps (melting of glaciers and more humid climate “flushing” the sediment down to the sea). Abandonment of the delta occurred around 10,500 cal yr BP, that is to say about 1000 yr after the end of the Younger Dryas, probably because of decreased sediment flux

    Strong hydrodynamic processes observed in the Mediterranean Cassidaigne submarine canyon

    Get PDF
    IntroductionSubmarine canyons are incisive morphologies that play an important role in the exchange between shallow and deep waters. They interact with the general circulation and induce a specific circulation locally oriented by the morphology. The characteristics of the physical processes at play, the way they interact with each other and the influence of extreme events is still an open question as few observations are available. To answer this question and to improve the representation of submarine canyons in numerical models, it is key to understand the specific circulation patterns and their transitions in these specific environments.MethodsThis paper presents observations of currents, temperature and turbidity along the Cassidaigne canyon, northwestern Mediterranean Sea. Two oceanographic cruises carried out in 2017 and 2019 gathered data from the outer shelf and canyon head at 100-400 m depth to the base of the continental slope at 1900 m depth.Results and DiscussionThe circulation in the Cassidaigne area is subject to upwelling and downwelling-favorable winds, to the Northern Current and its associated mesoscale structures and is oriented by the local morphology. Upwellings occur both during stratified and non-stratified conditions. They are triggered by a wind forcing higher than 14 m s–1 and their consecutive relaxations are marked by a counter-current. Near the canyon head and on the shelf, the current orientation depends on the stratification, the wind, the bottom morphology and the general circulation. The mesoscale variability of the Northern Current can lead to its intrusion over the shelf leading to barotropic cross currents over the canyon. At 1700 m depth, a quasi-permanent residual up-canyon flow is observed in a narrow gorge area and can be extrapolated to the canyon body. Finally, turbidity currents were observed for the first time in connection with upwelling events, suggesting the key role of canyons’ internal hydrodynamics on shelf sedimentary processes

    On the termination of deep-sea fan channels: Examples from the Rhone Fan (Gulf of Lion, Western Mediterranean Sea)

    Full text link
    The termination of a deep-sea turbiditic channel represents the ultimate sink of terrigenous sediment in the oceans or lakes. Such environment is characterized by rapid slope decrease and by loss of confinement of turbidity currents. It results in the deposition of Channel-Mouth-Lobes that can be separated from the channel mouth by an erosional (scoured) or by-pass dominated Channel-Lobe Transition Zone. Several factors can control the occurrence, extent and morphologic expression of the area such as the slope break angle, the upslope and downslope angle and the mud/sand ratio in flows. Disentangling these factors remains challenging due to the scarcity of outcrops and to the usual faint morphologies and low thickness of deposits. With bathymetric and seismic data we calculated the morphometric parameters of 8 channel-levees and their Channel-Mouth Lobes from the deepest area of the Rhone fan, a mud-sand rich system, and among which the youngest one (called neofan) was deposited at the end of the Last Glacial Maximum between 21.5 and 18.3 ka cal. BP. Emplacement and shape (finger-shaped or pear-shaped bulges) of Channel-Mouth Lobes is controlled by the seabed morphology (adjacent channel-levees and salt diapirs). A less prominent morphology of the neofan is attributed to premature quiescence related to the post sea-level rise sediment starvation. We show that the occurrence and expression of a Channel-Lobe Transition Zone is controlled by the gradient upstream of the channel mouth slope break. The extended Channel-Lobe Transition Zone and detached lobe of the neofan are attributed to the high upslope gradient (0.26°) while the less detached or attached lobes of other channel-levees is attributed to lower upslope gradient (0.13°). We show that scouring and scours concatenation into flutes at the Channel-Lobe Transition Zone is a major driver for the inception of channels and further confinement of turbidity current. For the first time we show that concatenation of scours in shingled disposition developed an incipient channel sinuosity at this very early stage of channel development. The channel-levee can extend downslope nearly instantaneously by tens of kilometers when isolated nascent channels connect to the channel mouth

    The Role of Canyons in Strata Formation

    Get PDF
    This paper provides a spatial and temporal multi-scale approach of European submarine canyons. We fi rst present the long-term geologic view of European margins as related to controls on submarine canyon development. Then we discuss the extent to which submarine canyon systems resemble river systems because both essentially form drainage networks. Finally, we deal with the hortest-term, highestresolution scale to get a fl avor of the current functioning and health of modern submarine canyons in the northwestern Mediterranean Sea. Submarine canyons are unique features of the seafl oor whose existence was known by European fi shermen centuries ago, especially for those canyons that have their heads at short distance from shoreline. Popular names given to specifi c canyons in the different languages spoken in European coastal communities refer to the concepts of a"deep" or"trench." In the old times it was also common thinking that submarine canyons where so deep that nobody could measure their depth or even that they had no bottom. Submarine canyons are just one of the seven different types of seafl oor valleys identifi ed by Shepard (1973) in his pioneering morphogenetic classifi cation. Shepard (1973) defined submarine canyons as"steep-walled, sinuous valleys, with V-shaped cross sections, and relief comparable even to the largest of land canyons; tributaries are found in most of the canyons and rock outcrops abound on their walls." Canyons are features typical of continental slopes with their upper reaches and heads cut into the continental shelf

    Sedimentological imprint on subseafloor microbial communities in Western Mediterranean Sea Quaternary sediments

    Get PDF
    An interdisciplinary study was conducted to evaluate the relationship between geological and paleoenvironmental parameters and the bacterial and archaeal community structure of two contrasting subseafloor sites in the Western Mediterranean Sea (Ligurian Sea and Gulf of Lion). Both depositional environments in this area are well-documented from paleoclimatic and paleooceanographic point of views. Available data sets allowed us to calibrate the investigated cores with reference and dated cores previously collected in the same area, and notably correlated to Quaternary climate variations. DNA-based fingerprints showed that the archaeal diversity was composed by one group, Miscellaneous Crenarchaeotic Group (MCG), within the Gulf of Lion sediments and of nine different lineages (dominated by MCG, South African Gold Mine Euryarchaeotal Group (SAGMEG) and <i>Halobacteria</i>) within the Ligurian Sea sediments. Bacterial molecular diversity at both sites revealed mostly the presence of the classes <i>Alphaproteobacteria</i>, <i>Betaproteobacteria</i> and <i>Gammaproteobacteria</i> within <i>Proteobacteria</i> phylum, and also members of <i>Bacteroidetes</i> phylum. The second most abundant lineages were <i>Actinobacteria</i> and <i>Firmicutes</i> at the Gulf of Lion site and <i>Chloroflexi</i> at the Ligurian Sea site. Various substrates and cultivation conditions allowed us to isolate 75 strains belonging to four lineages: <i>Alpha-</i>, <i>Gammaproteobacteria</i>, <i>Firmicutes</i> and <i>Actinobacteria</i>. In molecular surveys, the <i>Betaproteobacteria</i> group was consistently detected in the Ligurian Sea sediments, characterized by a heterolithic facies with numerous turbidites from a deep-sea <i>levee</i>. Analysis of relative betaproteobacterial abundances and turbidite frequency suggested that the microbial diversity was a result of main climatic changes occurring during the last 20 ka. Statistical direct multivariate canonical correspondence analyses (CCA) showed that the availability of electron acceptors and the quality of electron donors (indicated by age) strongly influenced the community structure. In contrast, within the Gulf of Lion core, characterized by a homogeneous lithological structure of upper-slope environment, most detected groups were <i>Bacteroidetes</i> and, to a lesser extent, <i>Betaproteobacteria</i>. At both site, the detection of <i>Betaproteobacteria</i> coincided with increased terrestrial inputs, as confirmed by the geochemical measurements (Si, Sr, Ti and Ca). In the Gulf of Lion, geochemical parameters were also found to drive microbial community composition. Taken together, our data suggest that the palaeoenvironmental history of erosion and deposition recorded in the Western Mediterranean Sea sediments has left its imprint on the sedimentological context for microbial habitability, and then indirectly on structure and composition of the microbial communities during the late Quaternary

    Modern relationships between microscopic charcoal in marine sediments and fire regimes on adjacent landmasses to refine the interpretation of marine paleofire records: An Iberian case study

    Get PDF
    Marine microcharcoal records provide invaluable information to understand changes in biomass burning and its drivers over multiple glacial and interglacial cycles and to evaluate fire models under warmer climates than today. However, quantitative reconstructions of burnt area, fire intensity and frequency from these records need calibration studies of the current fire-microcharcoal relationship. Here, we present the analysis of microcharcoal concentration and morphology in 102 core-top sediment samples collected in the Iberian margin and the Gulf of CĂĄdiz. We show that microcharcoal concentrations are influenced by the water depth or the distance from the river mouth. At regional scale, the mean microcharcoal concentrations and microcharcoal elongation (length to width ratio) show a marked latitudinal variation in their distribution, primarily controlled by the type of burnt vegetation in the adjacent continent. High microcharcoal concentrations in marine sediments represent rare, large and intense fires in open Mediterranean woodlands. Based on these results, the increasing trend of microcharcoal concentrations recorded since 8 ka in the well-known marine sedimentary core MD95-2042 off the Iberian margin indicates the occurrence of large and infrequent fires of high intensity due to the progressive degradation of the Mediterranean forest and the expansion of shrublands

    The last glacial maximum Balearic Abyssal Plain megabed revisited

    Get PDF
    Megabeds are thick sedimentary layers extending over thousands square kilometres in deep sea basins and are thought to result from large slope failures triggered by major external events. Such deposits have been found in at least three areas of the Mediterranean Sea. Although their discovery dates back to the early 1980s, many questions remain, concerning their initiation, source area, extent, and the nature of their emplacement. One of the largest previously documented megabeds was emplaced during the Last Glacial Maximum across the Balearic Abyssal Plain with a thickness of 8-10 m in water depths of up to 2800 m. New 3.5 kHz sub-bottom profiles and sediment cores provide greater constraint on the lateral variability of the megabed and allow to map it beyond previous estimates, with a revised areal extent up to 90,000-100,000 km2. Megabed terminations show gradual pinch-out to the West and an abrupt eastward termination against the Sardinia steep margin. The megabed presents both in seismic profiles and in sediment cores a tripartite subdivision likely corresponding to changes in flow regimes across the basin with a central area of sandy facies and erosional base oriented NNE-SSW allowing renewed discussions about sources and trigger of the megabed
    • 

    corecore