1,060 research outputs found

    Two-Dimensional Spectroscopy of Photospheric Shear Flows in a Small delta Spot

    Full text link
    In recent high-resolution observations of complex active regions, long-lasting and well-defined regions of strong flows were identified in major flares and associated with bright kernels of visible, near-infrared, and X-ray radiation. These flows, which occurred in the proximity of the magnetic neutral line, significantly contributed to the generation of magnetic shear. Signatures of these shear flows are strongly curved penumbral filaments, which are almost tangential to sunspot umbrae rather than exhibiting the typical radial filamentary structure. Solar active region NOAA 10756 was a moderately complex, beta-delta sunspot group, which provided an opportunity to extend previous studies of such shear flows to quieter settings. We conclude that shear flows are a common phenomenon in complex active regions and delta spots. However, they are not necessarily a prerequisite condition for flaring. Indeed, in the present observations, the photospheric shear flows along the magnetic neutral line are not related to any change of the local magnetic shear. We present high-resolution observations of NOAA 10756 obtained with the 65-cm vacuum reflector at Big Bear Solar Observatory (BBSO). Time series of speckle-reconstructed white-light images and two-dimensional spectroscopic data were combined to study the temporal evolution of the three-dimensional vector flow field in the beta-delta sunspot group. An hour-long data set of consistent high quality was obtained, which had a cadence of better than 30 seconds and sub-arcsecond spatial resolution.Comment: 23 pages, 6 gray-scale figures, 4 color figures, 2 tables, submitted to Solar Physic

    Finite type approximations of Gibbs measures on sofic subshifts

    Full text link
    Consider a H\"older continuous potential ϕ\phi defined on the full shift A^\nn, where AA is a finite alphabet. Let X\subset A^\nn be a specified sofic subshift. It is well-known that there is a unique Gibbs measure μϕ\mu_\phi on XX associated to ϕ\phi. Besides, there is a natural nested sequence of subshifts of finite type (Xm)(X_m) converging to the sofic subshift XX. To this sequence we can associate a sequence of Gibbs measures (μϕm)(\mu_{\phi}^m). In this paper, we prove that these measures weakly converge at exponential speed to μϕ\mu_\phi (in the classical distance metrizing weak topology). We also establish a strong mixing property (ensuring weak Bernoullicity) of μϕ\mu_\phi. Finally, we prove that the measure-theoretic entropy of μϕm\mu_\phi^m converges to the one of μϕ\mu_\phi exponentially fast. We indicate how to extend our results to more general subshifts and potentials. We stress that we use basic algebraic tools (contractive properties of iterated matrices) and symbolic dynamics.Comment: 18 pages, no figure

    On random topological Markov chains with big images and preimages

    Full text link
    We introduce a relative notion of the 'big images and preimages'-property for random topological Markov chains. This then implies that a relative version of the Ruelle-Perron-Frobenius theorem holds with respect to summable and locally Hoelder continuous potentials.Comment: Corrected and extended version of the article published in Stochastics and Dynamics 201

    Horizontal flow fields observed in Hinode G-band images II. Flow fields in the final stages of sunspot decay

    Full text link
    We present a subset of multi-wavelengths observations obtained with the Japanese Hinode mission, the Solar Dynamics Observatory (SDO), and the Vacuum Tower Telescope (VTT) at Observatorio del Teide, Tenerife, Spain during the time period from 2010 November 18-23. Horizontal proper motions were derived from G-band and Ca II H images, whereas line-of-sight velocities were extracted from VTT Echelle H-alpha 656.28 nm spectra and Fe I 630.25 nm spectral data of the Hinode/Spectro-Polarimeter, which also provided three-dimensional magnetic field information. The Helioseismic and Magnetic Imager on board SDO provided continuum images and line-of-sight magnetograms as context for the high-resolution observations for the entire disk passage of the active region. We have performed a quantitative study of photospheric and chromospheric flow fields in and around decaying sunspots. In one of the trailing sunspots of active region NOAA 11126, we observed moat flow and moving magnetic features (MMFs), even after its penumbra had decayed. We also noticed a superpenumbral structure around this pore. MMFs follow well-defined, radial paths from the spot all the way to the border of a supergranular cell surrounding the spot. In contrast, flux emergence near the other sunspot prevented it from establishing such well ordered flow patterns, which could even be observed around a tiny pore of just 2 Mm diameter. After the disappearance of the sunspots/pores a coherent patch of abnormal granulation remained at their location, which was characterized by more uniform horizontal proper motions, low divergence values, and diminished photospheric Doppler velocities. This region, thus, differs significantly from granulation and other areas covered by G-band bright points. We conclude that this peculiar flow pattern is a signature of sunspot decay and the dispersal of magnetic flux.Comment: 13 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    Breaking Synchrony by Heterogeneity in Complex Networks

    Full text link
    For networks of pulse-coupled oscillators with complex connectivity, we demonstrate that in the presence of coupling heterogeneity precisely timed periodic firing patterns replace the state of global synchrony that exists in homogenous networks only. With increasing disorder, these patterns persist until they reach a critical temporal extent that is of the order of the interaction delay. For stronger disorder these patterns cease to exist and only asynchronous, aperiodic states are observed. We derive self-consistency equations to predict the precise temporal structure of a pattern from the network heterogeneity. Moreover, we show how to design heterogenous coupling architectures to create an arbitrary prescribed pattern.Comment: 4 pages, 3 figure

    Equilibrium states for potentials with \sup\phi - \inf\phi < \htop(f)

    Full text link
    In the context of smooth interval maps, we study an inducing scheme approach to prove existence and uniqueness of equilibrium states for potentials Ï•\phi with he `bounded range' condition \sup \phi - \inf \phi < \htop, first used by Hofbauer and Keller. We compare our results to Hofbauer and Keller's use of Perron-Frobenius operators. We demonstrate that this `bounded range' condition on the potential is important even if the potential is H\"older continuous. We also prove analyticity of the pressure in this context.Comment: Added Lemma 6 to deal with the disparity between leading eigenvalues and operator norms. Added extra references and corrected some typo

    Ultrastructural and functional fate of recycled vesicles in hippocampal synapses

    Get PDF
    Efficient recycling of synaptic vesicles is thought to be critical for sustained information transfer at central terminals. However, the specific contribution that retrieved vesicles make to future transmission events remains unclear. Here we exploit fluorescence and time-stamped electron microscopy to track the functional and positional fate of vesicles endocytosed after readily releasable pool (RRP) stimulation in rat hippocampal synapses. We show that most vesicles are recovered near the active zone but subsequently take up random positions in the cluster, without preferential bias for future use. These vesicles non-selectively queue, advancing towards the release site with further stimulation in an actin-dependent manner. Nonetheless, the small subset of vesicles retrieved recently in the stimulus train persist nearer the active zone and exhibit more privileged use in the next RRP. Our findings reveal heterogeneity in vesicle fate based on nanoscale position and timing rules, providing new insights into the origins of future pool constitution
    • …
    corecore