32 research outputs found
ΠΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΡ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ° Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° Π΄Π»Ρ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠΎΡΡΠ΅ΠΊΡΠΈΠΈ ΠΌΠΈΠΊΡΠΎΡΠ»ΠΎΡΡ ΠΊΠΈΡΠ΅ΡΠ½ΠΈΠΊΠ°
Fecal microbiota transplantation (FMT) is now considered as an effective tool for the treatment of various GI pathologies. Fecal preparations are delivered both through the lower GIT (enema, colonoscopy) and upper (endoscopy, capsules). A common disadvantage of instrumental methods of administration is their high invasiveness associated with the risk of intestinal perforation and the use of anesthesia. Oral capsules are minimally invasive, comfortable and more aesthetic, so this method of drug delivery is gaining popularity. The main issue with the use of frozen feces (including the lyophilisate used in capsules) is its efficiency compared to the original material. During lyophilization, cells are exposed to stress factors such as low temperatures, water crystallization, osmotic stress, changes in pH, and dehydration. To reduce the likelihood of cell damage during lyophilization, protective media (lyo-protectants) are used. In this work sucrose, gelatin, and their combinations have been used as lyoprotectors. To estimate the number of microorganisms, a bacteriological study was carried out. The number of Bifidobacteria, Lactobacilli, and the total number of E.coli and Enterobacteriaceae was estimated. It was found that the lyophilized stool sample containing 10% sucrose as a protective medium had the highest number of viable cells. Also, the physical properties of the lyophilisate (its flowability) are convenient for preparing capsulated form. The molar ratios of short chain fatty acids (SCFAs) in the original fecal samples and lyophilisates were studied by gas chromatography. The molar ratios of major SCFAs (acetate, propionate and butyrate) were identical in the samples studied. The composition of the protective medium in which the lyophilized biomaterial corresponds to the original feces in terms of the number of "live" microorganisms has been proposed. According to its physical characteristics lyophilisate is convenient for capsules preparation.Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΌΡ ΠΌΠΎΠΌΠ΅Π½ΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ ΡΠ΅ΠΊΠ°Π»ΡΠ½ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΠ±ΠΈΠΎΡΡ (Π’Π€Π) ΠΏΡΠΈ Π»Π΅ΡΠ΅Π½ΠΈΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΠΠ’ Π½Π΅ Π²ΡΠ·ΡΠ²Π°Π΅Ρ ΡΠΎΠΌΠ½Π΅Π½ΠΈΠΉ. ΠΡΠ΅ΠΏΠ°ΡΠ°ΡΡ ΡΠ΅ΠΊΠ°Π»ΠΈΠΉ Π΄ΠΎΡΡΠ°Π²Π»ΡΡΡ ΠΊΠ°ΠΊ ΡΠ΅ΡΠ΅Π· Π½ΠΈΠΆΠ½ΠΈΠ΅ ΠΎΡΠ΄Π΅Π»Ρ ΠΠΠ’ (ΠΊΠ»ΠΈΠ·ΠΌΠ°, ΠΊΠΎΠ»ΠΎΠ½ΠΎΡΠΊΠΎΠΏΠΈΡ), ΡΠ°ΠΊ ΠΈ Π²Π΅ΡΡ
Π½ΠΈΠ΅ (ΡΠ½Π΄ΠΎΡΠΊΠΎΠΏΠΈΡ, ΠΊΠ°ΠΏΡΡΠ»Ρ). ΠΠ±ΡΠΈΠΌ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΊΠΎΠΌ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π²Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΈΡ
Π²ΡΡΠΎΠΊΠ°Ρ ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΡΡΡ, ΡΠ²ΡΠ·Π°Π½Π½Π°Ρ Ρ ΡΠΈΡΠΊΠΎΠΌ ΠΏΠ΅ΡΡΠΎΡΠ°ΡΠΈΠΈ ΠΊΠΈΡΠ΅ΡΠ½ΠΈΠΊΠ° ΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π°Π½Π΅ΡΡΠ΅Π·ΠΈΠΈ. ΠΠ΅ΡΠΎΡΠ°Π»ΡΠ½ΡΠ΅ ΠΊΠ°ΠΏΡΡΠ»Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎ ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½Ρ, ΡΠ΄ΠΎΠ±Π½Ρ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΡΠΈΡΠ½Ρ, ΠΏΠΎΡΡΠΎΠΌΡ ΡΡΠΎΡ ΡΠΏΠΎΡΠΎΠ± Π΄ΠΎΡΡΠ°Π²ΠΊΠΈ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ° ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ Π²ΡΠ΅ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠΏΡΠ»ΡΡΠ½ΡΠΌ. ΠΡΠ½ΠΎΠ²Π½ΠΎΠΉ Π²ΠΎΠΏΡΠΎΡ, ΡΠ²ΡΠ·Π°Π½Π½ΡΠΉ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π·Π°ΠΌΠΎΡΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠ°Π»Π° (Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ Π»ΠΈΠΎΡΠΈΠ»ΠΈΠ·Π°ΡΠ°, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΠΎΠ³ΠΎ Π² ΠΊΠ°ΠΏΡΡΠ»Π°Ρ
), Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ°ΠΊΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠ° ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΈΡΡ
ΠΎΠ΄Π½ΡΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠΌ. Π ΠΏΡΠΎΡΠ΅ΡΡΠ΅ Π»ΠΈΠΎΡΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ ΠΊΠ»Π΅ΡΠΊΠΈ ΠΏΠΎΠ΄Π²Π΅ΡΠ³Π°ΡΡΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΡΡΠ΅ΡΡΠΎΠ²ΡΡ
ΡΠ°ΠΊΡΠΎΡΠΎΠ², ΡΠ°ΠΊΠΈΡ
ΠΊΠ°ΠΊ Π½ΠΈΠ·ΠΊΠΈΠ΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ, ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΡ Π²ΠΎΠ΄Ρ, ΠΎΡΠΌΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΡΡΠ΅ΡΡ, ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ ΡΠ°ΡΡΠ²ΠΎΡΠΎΠ², Π΄Π΅Π³ΠΈΠ΄ΡΠ°ΡΠ°ΡΠΈΡ. ΠΠ»Ρ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠΈΡΠΊΠ° ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠΉ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΏΡΠΈ Π»ΠΈΠΎΡΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Π·Π°ΡΠΈΡΠ½ΡΠ΅ ΡΡΠ΅Π΄Ρ (Π»ΠΈΠΎΠΏΡΠΎΡΠ΅ΠΊΡΠΎΡΡ). Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π»ΠΈΠΎΠΏΡΠΎΡΠ΅ΠΊΡΠΎΡΠΎΠ² Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π»ΠΈ ΡΠ°Ρ
Π°ΡΠΎΠ·Ρ, ΠΆΠ΅Π»Π°ΡΠΈΠ½ ΠΈ ΠΈΡ
ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ. ΠΠ»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΠΌΠΈΠΊΡΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π±Π°ΠΊΡΠ΅ΡΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅. ΠΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π±Π°ΠΊΡΠ΅ΡΠΈΠΉ ΡΠΎΠ΄Π° Bifidobacterium, Lactobacillus, Escherichia, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠ΅ΠΌΠ΅ΠΉΡΡΠ²Π° Enterobacterales Π² ΡΠ΅Π»ΠΎΠΌ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π² Π»ΠΈΠΎΡΠΈΠ»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΌ ΠΎΠ±ΡΠ°Π·ΡΠ΅ ΠΊΠ°Π»Π°, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅ΠΌ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π·Π°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ΅Π΄Ρ 10 % ΡΠ°Ρ
Π°ΡΠΎΠ·Ρ, Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ, ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π»ΠΈΠΎΡΠΈΠ»ΠΈΠ·Π°ΡΠ° (Π΅Π³ΠΎ ΡΡΠΏΡΡΠ΅ΡΡΡ) ΡΠ΄ΠΎΠ±Π½Ρ Π΄Π»Ρ Π½Π°ΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΊΠ°ΠΏΡΡΠ». ΠΠ΅ΡΠΎΠ΄ΠΎΠΌ Π³Π°Π·ΠΎΠ²ΠΎΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΠΌΠΎΠ»ΡΡΠ½ΡΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΠΠ Π² ΠΈΡΡ
ΠΎΠ΄Π½ΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠ°Ρ
ΠΊΠ°Π»Π° ΠΈ Π»ΠΈΠΎΡΠΈΠ»ΠΈΠ·Π°ΡΠ°Ρ
. ΠΠΎΠ»ΡΡΠ½ΡΠ΅ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ ΠΌΠ°ΠΆΠΎΡΠ½ΡΡ
ΠΊΠΎΡΠΎΡΠΊΠΎΡΠ΅ΠΏΠΎΡΠ΅ΡΠ½ΡΡ
ΠΆΠΈΡΠ½ΡΡ
ΠΊΠΈΡΠ»ΠΎΡ (ΠΠΠ) Π°ΡΠ΅ΡΠ°ΡΠ°, ΠΏΡΠΎΠΏΠΈΠΎΠ½Π°ΡΠ° ΠΈ Π±ΡΡΠΈΡΠ°ΡΠ° ΠΎΠΊΠ°Π·Π°Π»ΠΈΡΡ ΠΈΠ΄Π΅Π½ΡΠΈΡΠ½Ρ Π² ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠ°Ρ
. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ ΡΠΎΡΡΠ°Π² Π·Π°ΡΠΈΡΠ½ΠΎΠΉ ΡΡΠ΅Π΄Ρ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π»ΠΈΠΎΡΠΈΠ»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ Π±ΠΈΠΎΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΠΈΡΡ
ΠΎΠ΄Π½ΠΎΠΌΡ ΠΊΠ°Π»Ρ ΠΏΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Ρ Β«ΠΆΠΈΠ²ΡΡ
Β» ΠΌΠΈΠΊΡΠΎΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠΎΠ². ΠΠΈΠΎΡΠΈΠ»ΠΈΠ·Π°Ρ ΠΏΠΎ ΡΠ²ΠΎΠΈΠΌ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΌ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°ΠΌ ΡΠ΄ΠΎΠ±Π΅Π½ Π΄Π»Ρ ΠΏΡΠΈΠ³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΊΠ°ΠΏΡΡΠ»
Revised data on Ξ³-families observed in X-ray emulsion chambers of the Experiment PAMIR
Recently essential efforts were made to improve measurement routine with X-ray films exposed in the X-ray emulsion chambers at the Pamirs. Analysis of X-ray emulsion response upon recorded events show that Ξ³-family energy and intensity in early publications were over estimated. The main physical results of the new analysis are presented
Gamma-ray families with halos: Main characteristics and possibilities of using them to estimate the p+He fraction in the mass composition of cosmic rays at energies 1β100βPeV
Characteristics of Ξ³-ray families with halos (XREC, Pamir) and data of experiments with EAS are analyzed to estimate the proton and helium (p+He) fractions in the primary cosmic radiation at E0 = 1β100βPeV. It is shown that at energies E0 βΌ 1β100βPeV the fraction of p+He remains significant, namely, the fraction of p+He is near 40% at E0 = 10βPeV
Observation Of A High-energy Cosmic-ray Family Caused By A Centauro-type Nuclear Interaction In The Joint Emulsion Chamber Experiment At The Pamirs
An exotic cosmic-ray family event is observed in the large emulsion chamber exposed by the joint at the Pamirs (4360 m above sea level). The family is composed of 120Ξ³-ray-induced showers and 37 hadron-induced showers with individual visible energy exceeding 1 TeV. The decisive feature of the event is the hadron dominance: Ξ£EΞ³, Ξ£E(Ξ³) h, γEΞ³, γE(Ξ³) hγ, γEΞ³Β·RΞ³γ and γE(Ξ³)Β·Rhγ being 298 TeV, 476 TeV, 2.5 TeV, 12.9 TeV, 28.6 GeV m and 173 GeV m, respectively. Most probably the event is due to a Centauro interaction, which occured in the atmosphere at βΌ700 m above the chamber. The event will constitute the second beautiful candidate for a Centauro observed at the Pamirs. Β© 1987.1901-2226233Bayburina, (1981) Nucl. Phys. B, 191, p. 1Lattes, Fujimoto, Hasegawa, Hadronic interactions of high energy cosmic-ray observed by emulsion chambers (1980) Physics Reports, 65, p. 151(1984) Trudy FIAN, 154, p. 1Borisov, (1984) Proc. Intern. Symp. on Cosmic rays and particle physics, p. 3. , TokyoRen, (1985) 19th Intern. Cosmic ray Conf., 6, p. 317. , La JollaYamashita, (1985) 19th Intern. Cosmic ray Conf., 6, p. 364. , La JollaTamada, (1977) Nuovo Cimento, 41 B, p. 245T. Shibata et al., to be publishedHillas, (1979) 16th Intern. Cosmic ray Conf., 6, p. 13. , KyotoBattiston, Measurement of the proton-antiproton elastic and total cross section at a centre-of-mass energy of 540 GeV (1982) Physics Letters B, 117, p. 126UA5 Collab., G.J. Alner et al., preprint CERN-EP/85-62Taylor, (1976) Phys. Rev. D, 14, p. 1217Burnett, (1984) Proc. Intern. Symp. on Cosmic rays and particle physics, p. 468. , Toky
Nuclear Interactions Of Super High Energy Cosmic-rays Observed In Mountain Emulsion Chambers
Here we present a summary of joint discussions on the results of three mountain experiments with large-scale emulsion chambers, at Pamir, Mt. Fuji and Chacaltaya. Observations cover gamma quanta, hadrons and their clusters (called "families"). The following topics are covered, concerning the characteristics of nuclear interactions the energy region 1014-1016 eV: (i) rapid dissipation seen in atmospheric diffusion of high-energy cosmic-rays; (ii) multiplicity and Pt increase in produced pi-mesons in the fragmentation region; (iii) existence of large-Pt jets, (iv) extremely hadron-rich family of the Centauro type; (v) exotic phenomena in the extremely high energy region beyond 1016 eV. Β© 1981.1911125(1977) Acta Univ. Lodz ser. II, (60)(1973) 13th Int. Cosmic-ray Conf., 3, p. 2228(1975) 14th Int. Cosmic-Ray Conf., 7, p. 2365(1979) AIP Conf. Proc. no. 49, p. 334(1979) 16th Int. Cosmic-ray Conf., 6, p. 344(1979) 16th Int. Cosmic-ray Conf., 7, p. 6816th Int. Cosmic-ray Conf. (1979) 16th Int. Cosmic-ray Conf., 7, p. 284(1979) 16th Int. Cosmic-ray Conf., 7, p. 294(1979) 16th Int. Cosmic-ray Conf., 13, p. 87(1979) 16th Int. Cosmic-ray Conf., 13, p. 92(1979) 16th Int. Cosmic-ray Conf., 13, p. 98(1979) AIP Conf. Proc. no. 49, p. 94(1979) AIP Conf. Proc. no. 49, p. 145(1979) AIP Conf. Proc. no. 49, p. 317(1979) 16th Int. Cosmic-ray Conf., 6, p. 350(1979) 16th Int. Cosmic-ray Conf., 6, p. 356(1979) 16th Int. Cosmic-ray Conf., 6, p. 362Nikolsky, Proc. 9th Int. High-energy Symp. (1978) CSSR, 21. , ToborMiyake, (1978) Proc. 19th Int. Conf. on High-energy physics, p. 433Vernov, (1977) Physica, 3, p. 1601Khristiansen, (1978) JETP Lett., 28, p. 124(1973) 13th Int. Cosmic-ray Conf., 3, p. 2219Izv. Acad. Nauk USSR, ser Phys. (1974) Izv. Acad. Nauk USSR, ser Phys., 38, p. 918(1975) 14th Int. Cosmic-ray Conf., 7, p. 2365(1979) 16th Int. Cosmic-ray Conf., 7, p. 68Dunaevsky, Urysson, Emelyanov, Shorin, Tashimov, (1975) FIAN preprint no. 150Dunaevsky, Urysson, Emelyanov, Shorin, Tashinov, (1979) Acta Univ. Lodz ser. II, (60), p. 199Ivanenko, Kanevskya, Roganova, (1978) JETP Lett., 40, p. 704Ivanenko, Kanevsky, Roganova, (1979) 16th Int. Cosmic-ray Conf., 7, p. 101Ivanenko, Kanevsky, Roganova, (1979) 16th Int. Cosmic-ray Conf., 7, p. 198Wrotniak, (1977) Acta Univ. Lodz ser. II, (60), p. 165Krys, Tomaszevski, Wrotniak, (1979) 16th Int. Cosmic-ray Conf., 7, p. 182Krys, Tomaszevski, Wrotniak, (1979) 16th Int. Cosmic-ray Conf., 7, p. 186Fomin, Kempa, Khristiansen, Levina, Piotrowska, Wdowczyk, (1977) 15th Int. Cosmic-ray Conf., 7, p. 248Fomin, Kempa, Khristiansen, Levina, Piotrowska, Wdowczyk, (1979) 16th Int. Cosmic-ray Conf., 13, p. 82Azimov, Mullazhanov, Yuldashbayev, (1979) 16th Int. Cosmic-ray Conf., 7, p. 262Azimov, Mullazhanov, Yuldashbayev, (1977) Acta Univ. Lodz ser. II, (60), p. 275Kasahara, Torri, Yuda, (1979) 16th Int. Cosmic-ray Conf., 13, p. 70Kasahara, Torii, Yuda, (1979) 16th Int. Cosmic-ray Conf., 13, p. 79Shibata, (1979) 16th Int. Cosmic-ray Conf., 7, p. 176H. Semba, T. Shibata and T. Tabuki, Suppl. Prog. Theor. Phys., to be publishedZhdanov, Roinishvilli, Smorodin, Tomaszevski, (1975) FIAN preprint no. 163Lattes, Fujimoto, Hasegawa, Hadronic interactions of high energy cosmic-ray observed by emulsion chambers (1980) Physics Reports, 65, p. 152Ellsworth, Gaisser, Yodh, (1981) Phys. Rev., 23 D, p. 764Baradzei, Smorodin, (1974) FIAN preprint nos. 103, 104Baradzei, Smorodin, (1977) Acta Univ. Lodz ser. II, (60), p. 51Zhdanov, (1980) FIAN preprint no. 140H. Semba, T. Shibata and T. Tabuki, Suppl. Prog. Theor. Phys., to be publishedShibata, (1980) Phys. Rev., 22 D, p. 100Slavatinsky, (1980) Proc. 7th European Symp. on Cosmic rays, , Leningrad, to be published(1979) AIP Conference Proc. no. 49, p. 145Azimov, Abduzhamilov, Chudakov, (1963) JETP (Sov. Phys.), 45, p. 40713th Int. Cosmic-ray Conf. (1973) 13th Int. Cosmic-ray Conf., 5, p. 326Acharya, Rao, Sivaprasad, Rao, (1979) 16th Int. Cosmic-ray Conf., 6, p. 289Ellsworth, Goodman, Yodh, Gaisser, Stanev, (1981) Phys. Rev., 23 D, p. 771Bariburina, Guseva, Denisova, (1980) Acta Univ. Lodz, 1, p. 9415th Int. Cosmic-ray Conf. (1977) 15th Int. Cosmic-ray Conf., 7, p. 184(1979) AIP Conf. Proc. no. 49, p. 33
Observation Of Very High Energy Cosmic-ray Families In Emulsion Chambers At High Mountain Altitudes (i)
Characteristics of cosmic-ray hadronic interactions in the 1015 - 1017 eV range are studied by observing a total of 429 cosmic-ray families of visible energy greater than 100 TeV found in emulsion chamber experiments at high mountain altitudes, Chacaltaya (5200 m above sea level) and the Pamirs (4300 m above sea level). Extensive comparisons were made with simulated families based on models so far proposed, concentrating on the relation between the observed family flux and the behaviour of high-energy showers in the families, hadronic and electromagnetic components. It is concluded that there must be global change in characteristics of hadronic interactions at around 1016 eV deviating from thise known in the accelerator energy range, specially in the forwardmost angular region of the collision. A detailed study of a new shower phenomenon of small-pT particle emissions, pT being of the order of 10 MeV/c, is carried out and its relation to the origin of huge "halo" phenomena associated with extremely high energy families is discussed as one of the possibilities. General characteristics of such super-families are surveyed. Β© 1992.3702365431Borisov, (1981) Nucl. Phys., 191 BBaybrina, (1984) Trudy FIAN 154, p. 1. , [in Russian], Nauka, MoscowLattes, Hadronic interactions of high energy cosmic-ray observed by emulsion chambers (1980) Physics Reports, 65, p. 151Hasegawa, ICR-Report-151-87-5 (1987) presented at FNAL CDF Seminar, , Inst. for Cosmic Ray Research, Univ. of TokyoCHACALTAYA Emulsion Chamber Experiment (1971) Progress of Theoretical Physics Supplement, 47, p. 1Yamashita, Ohsawa, Chinellato, (1984) Proc. 3rd Int. Symp. on Cosmic Rays and Particle Physics, p. 30. , Tokyo, 1984, Inst. for Cosmic Ray Research, Univ. of Tokyo(1984) Proc. 3rd Int. Symp. on Cosmic Rays and Particle Physics, p. 1. , Tokyo, 1984Baradzei, (1984) Proc. 3rd Int. Symp. on Cosmic Rays and Particle Physics, p. 136. , Tokyo, 1984Yamashita, (1985) J. Phys. Soc. Jpn., 54, p. 529Bolisov, (1984) Proc. 3rd Int. Symp. on Cosmic rays and Particle Physics, p. 248. , Tokyo, 1984, Inst. for Cosmic Ray Research, Univ. of TokyoTamada, Tomaszewski, (1988) Proc. 5th Int. Symp. on Very High Energy Cosmic-Ray Interactions, p. 324. , Lodz, 1988, Inst. for Cosmic Ray Research, Univ. of Tokyo, PolandHasegawa, (1989) ICR-Report-197-89-14, , Inst. for Cosmic Ray Research, Univ. of TokyoCHACALTAYA Emulsion Chamber Experiment (1971) Progress of Theoretical Physics Supplement, 47, p. 1Okamoto, Shibata, (1987) Nucl. Instrum. Methods, 257 A, p. 155Zhdanov, (1980) FIAN preprint no. 45, , Lebedev Physical Institute, MoscowSemba, Gross Features of Nuclear Interactions around 1015eV through Observation of Gamma Ray Families (1983) Progress of Theoretical Physics Supplement, 76, p. 111Nikolsky, (1975) Izv. Akad. Nauk. USSR Ser. Fis., 39, p. 1160Burner, Energy spectra of cosmic rays above 1 TeV per nucleon (1990) The Astrophysical Journal, 349, p. 25Takahashi, (1990) 6th Int. Symp. on Very High Energy Cosmic-ray Interactions, , Tarbes, FranceRen, (1988) Phys. Rev., 38 D, p. 1404Alner, The UA5 high energy simulation program (1987) Nuclear Physics B, 291 B, p. 445Bozzo, Measurement of the proton-antiproton total and elastic cross sections at the CERN SPS collider (1984) Physics Letters B, 147 B, p. 392Wrotniak, (1985) Proc. 19th Cosmic-Ray Conf. La Jolla, 1985, 6, p. 56. , NASA Conference Publication, Washington, D.CWrotniak, (1985) Proc. 19th Cosmic-Ray Conf. La Jolla, 1985, 6, p. 328. , NASA Conference Publication, Washington, D.CMukhamedshin, (1984) Trudy FIAN, 154, p. 142. , Nauka, Moscow, [in Russian]Dunaevsky, Pluta, Slavatinsky, (1988) Proc. 5th Int. Symp. on Very High Energy Cosmic-Ray Interactions, p. 143. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, PolandKaidalov, Ter-Martirosyan, (1987) Proc. 20th Int. Cosmic-Ray Conf., Moscow, 1987, 5, p. 141. , Nauka, MoscowShabelsky, (1985) preprints LNPI-1113Shabelsky, (1986) preprints LNPI-1224, , Leningrad [in Russian]Hillas, (1979) Proc. 16th Int. Cosmic-Ray Conf., Kyoto, 6, p. 13. , Inst. for Cosmic Ray Research, Univ. of TokyoBorisov, (1987) Phys. Lett., 190 B, p. 226Hasegawa, Tamada, (1990) 6th Int. Symp. on Very High Energy Cosmic-Ray Interactions, , Tarbes, FranceSemba, Gross Features of Nuclear Interactions around 1015eV through Observation of Gamma Ray Families (1983) Progress of Theoretical Physics Supplement, p. 111Ren, (1988) Phys. Rev., 38 D, p. 1404Dynaevsky, Zimin, (1988) Proc. 5th Int. Symp. on Very High Energy Cosmic-Ray Interaction, p. 93. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, PolandDynaevsky, (1990) Proc. 6th Int. Symp. on Very High Energy Cosmic-Ray Interactions, , Tarbes, France(1989) FIAN preprint no. 208, , Lebedev Physical Institute, Moscow(1990) Proc. 21st Int. Cosmic-Ray Conf., Adelaide, 8, p. 259. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, AustraliaHasegawa, (1990) ICR-Report-216-90-9, , Inst. for Cosmic-Ray Research, Univ. of TokyoTamada, (1990) Proc. 21st Int. Cosmic-Ray Conf., Adelaide, 1990, 8. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, AustraliaTamada, (1990) ICR-Report-216-90-9(1981) Proc. 17th Int. Cosmic-Ray Conf., Paris, 5, p. 291(1990) Proc. Int. Cosmic-Ray Conf., Adelaide, 1990, 8, p. 267. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, Australia(1989) Inst. Nucl. Phys. 89-67/144, , preprint, Inst. Nucl. Phys., Moscow State UnivSmilnova, (1988) Proc. 5th Int. Sym. on Very High Energy Cosmic-Ray Interactions, p. 42. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, PolandGoulianos, (1986) Proc. Workshop of Particle Simulation at High Energies, , University of Wisconsin, Madison, USAIvanenko, (1983) Proc. 18th Int. Cosmic-Ray Conf., Bangalore, 1983, 5, p. 274. , Tata Inst. Fundamental Research, Bombay, IndiaIvanenko, (1984) Proc. Int. Symp. on Cosmic-Rays and Particle Physics, p. 101. , Tokyo, 1984, Inst. for Cosmic Ray Research, Univ. of Tokyo(1988) 5th Int. Symp. on Very High Energy Cosmic-Ray Interactions, p. 180. , Lodz, 1988, Inst. of Physics, Univ. of Lodz, Poland(1990) Proc. 21st Int. Cosmic-Ray Conf., Adelaide, 1990, 8, p. 251. , Dept. Physics and Mathematical Physics, Univ. of Adelaide, Australia(1991) Izv. AN USSR No. 4, , to be publishedNikolsky, Shaulov, Cherdyntseva, (1990) FIAN preprint no. 140, , Lebedev Physical Institute, Moscow, [in Russian](1987) Proc. 20th Int. Cosmic-Ray Conf., Moscow, 1987, 5, p. 326. , Nauka, Mosco
ΠΠΠΠΠΠΠΠ‘ΠΠΠ― ΠΠ£Π§ΠΠΠΠ― ΠΠΠΠΠΠΠ‘Π’ΠΠΠ Π‘ΠΠ£Π§ΠΠΠ ΠΠ‘ΠΠΠΠΠΠΠΠΠΠ Π’ΠΠ§ΠΠΠΠ― ΠΠΠ£Π₯ΠΠΠ ΠΠΠΠ¬ΠΠ‘Π
Wilms' tumor is the most common primary malignant renal tumor. It is paradigm for comprehensive treatment of malignant solid tumors in children. Typically, children with this disorder are initially seen with abdominal distention, palpable masses or due to fever of unknown origin. Atypical tumor symptoms can be caused by complications, making it difficult to diagnose the disease. We present three clinical cases of Wilms' tumor in young children. Emergency multidetector computed tomography and magnetic resonance imaging provided the surgeon with sufficient information to perform an urgent radical resection.ΠΠΏΡΡ
ΠΎΠ»Ρ ΠΠΈΠ»ΡΠΌΡΠ° β Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½Π°Ρ ΠΏΠ΅ΡΠ²ΠΈΡΠ½Π°Ρ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ ΠΎΠΏΡΡ
ΠΎΠ»Ρ ΠΏΠΎΡΠ΅ΠΊ β ΡΠ»ΡΠΆΠΈΡ ΠΏΠ°ΡΠ°Π΄ΠΈΠ³ΠΌΠΎΠΉ Π΄Π»Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠ³ΠΎ Π»Π΅ΡΠ΅Π½ΠΈΡ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
ΡΠΎΠ»ΠΈΠ΄Π½ΡΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅ΠΉ Ρ Π΄Π΅ΡΠ΅ΠΉ. Π ΡΠΈΠΏΠΈΡΠ½ΡΡ
ΡΠ»ΡΡΠ°ΡΡ
Π΄Π΅ΡΠΈ Ρ ΡΡΠΎΠΉ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ ΠΏΠΎΠΏΠ°Π΄Π°ΡΡ ΠΏΠΎΠ΄ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΠ΅ ΠΈΠ·-Π·Π° Π²Π·Π΄ΡΡΠΈΡ ΠΆΠΈΠ²ΠΎΡΠ°, ΠΏΠ°Π»ΡΠΏΠΈΡΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΈΠ»ΠΈ Π² ΡΠ²ΡΠ·ΠΈ Ρ Π»ΠΈΡ
ΠΎΡΠ°Π΄ΠΊΠΎΠΉ Π½Π΅ΡΡΠ½ΠΎΠ³ΠΎ Π³Π΅Π½Π΅Π·Π°. ΠΠ΅ΡΠΈΠΏΠΈΡΠ½ΡΠ΅ ΠΏΡΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ΠΌ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΉ, ΡΡΠΎ Π·Π°ΡΡΡΠ΄Π½ΡΠ΅Ρ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΡ. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΡΠΈ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΡ
Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ ΠΠΈΠ»ΡΠΌΡΠ° Ρ Π΄Π΅ΡΠ΅ΠΉ ΠΌΠ»Π°Π΄ΡΠ΅Π³ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ°. ΠΠΊΡΡΡΠ΅Π½Π½ΠΎ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΠ΅ ΠΌΡΠ»ΡΡΠΈΡΠΏΠΈΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ ΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎ-ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ½Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ»ΠΈ Ρ
ΠΈΡΡΡΠ³Π° Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΠΉ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠ΅ΠΉ Π΄Π»Ρ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΡΠΎΡΠ½ΠΎΠΉ ΡΠ°Π΄ΠΈΠΊΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ
EXPERIENCE OF CLINICAL USE OF RITUXIMAB IN PATIENT WITH SYSTEMIC JUVENILE ARTHRITIS (A CASE REPORT)
The case of early onset and severe course of systemic juvenile rheumatoid arthritis refractory to classic immunosuppressive agents and blockers of tumor necrosis factor (TNF) is presented in this article. Successful clinical use of biological agent rituximab was described. extraarticular symptoms of disease were stopped by 6 week of treatment, and acute inflammatory alteration of articulations was reduced by 16 week, the range of motions was completely restored. This case report demonstrates high activity of rituximab. A clinical and laboratory remission of disease in patient with severe course of systemic juvenile rheumatoid arthritis continues for a 32 weeks.Key words: children, juvenile rheumatoid arthritis, rituximab