190 research outputs found

    Premalignant changes in the bronchial epithelium are prognostic factors of distant metastasis in non-small cell lung cancer patients

    Get PDF
    Background: The study assessed the possibility of dividing patients into groups based on the assessment of morphological changes in the epithelium of small-caliber bronchi located near the primary tumor in order to predict high and low risks of distant metastasis of non-small cell lung cancer. Methods: In 171 patients with non-small cell lung cancer (T1-4N0-3M0) in small-caliber bronchi taken at a distance of 3–5 cm from the tumor, various variants of morphological changes in the bronchial epithelium (basal cell hyperplasia (BCH), squamous cell metaplasia (SM), and dysplasia (D)) were assessed. Long-term results of treatment, namely, distant metastasis, were assessed after 2 and 5 years. Results: During the follow-up period, distant metastases were found in 35.1% (60/171) of patients. Most often, they were observed in patients of the high-risk group: BCH+SM−D−(51.6%, 40/95) and BCH−SM+D+ (54.4%, 6/11). Less often, distant metastases were observed in low-risk group patients: BCH+SM+D− (6.7%, 3/45) and BCH−SM−D−(10.0%, 2/20). Tumor size, grade, and stage were significant predictors of metastasis only in the high-risk group. The 5-year metastasis-free survival was better in the low-risk group of distant metastases. Conclusions: Isolated BCH or dysplasia in small bronchi distant from foci of tumor isassociated with a high-risk distant metastasis and less 5-year metastasis-free survival

    Electric dipole moments and the search for new physics

    Get PDF
    Static electric dipole moments of nondegenerate systems probe mass scales for physics beyond the Standard Model well beyond those reached directly at high energy colliders. Discrimination between different physics models, however, requires complementary searches in atomic-molecular-and-optical, nuclear and particle physics. In this report, we discuss the current status and prospects in the near future for a compelling suite of such experiments, along with developments needed in the encompassing theoretical framework.Comment: Contribution to Snowmass 2021; updated with community edits and endorsement

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    Get PDF
    The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of s=1.96\sqrt s =1.96 TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is AFBttˉ=0.128±0.025A_{\mathrm{FB}}^{t\bar{t}} = 0.128 \pm 0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions

    Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons

    Get PDF
    Measurements of the Collins and Sivers asymmetries for charged pions and charged and neutral kaons produced in semi-inclusive deep-inelastic scattering of high energy muons off transversely polarised protons are presented. The results were obtained using all the available COMPASS proton data, which were taken in the years 2007 and 2010. The Collins asymmetries exhibit in the valence region a non-zero signal for pions and there are hints of non-zero signal also for kaons. The Sivers asymmetries are found to be positive for positive pions and kaons and compatible with zero otherwise. © 2015

    On Using the <i>Allium</i> Test for Waterbody Biomonitoring in the Murmansk Region

    No full text
    Having started in the 1930-40s, the industrial development of the Kola North has caused elevated environmental pollution of the area’s water bodies. The pollutants contained in dust emissions, dissolved substances and waste waters require their genotoxicity to be estimated using in vivo assays. This article addresses the effect of pollutants entering the water bodies of the Murmansk region together with mining waste, which leads to a decrease in mitotic activity and an increase in chromosomal abnormalities in the roots of Allium cepa L. The evaluated waters showed an effect of reducing the mitotic index and the appearance of chromosomal aberrations; this may be associated with the presence of compounds in the water, such as mining waste

    The crowding dynamics of the motor protein kinesin-II

    Get PDF
    Intraflagellar transport (IFT) in C. elegans chemosensory cilia is an example of functional coordination and cooperation of two motor proteins with distinct motility properties operating together in large groups to transport cargoes: a fast and processive homodimeric kinesin-2, OSM-3, and a slow and less processive heterotrimeric kinesin-2, kinesin-II. To study the mechanism of the collective dynamics of kinesin-II of C. elegans cilia in an in vitro system, we used Total Internal Reflection Fluorescence microscopy to image the motility of truncated, heterodimeric kinesin-II constructs at high motor densities. Using an analysis technique based on correlation of the fluorescence intensities, we extracted quantitative motor parameters, such as motor density, velocity and average run length, from the image. Our experiments and analyses show that kinesin-II motility parameters are far less affected by (self) crowding than OSM-3. Our observations are supported by numerical calculations based on the TASEP-LK model (Totally Asymmetric Simple Exclusion Process-Langmuir Kinetics). From a comparison of data and modelling of OSM-3 and kinesin-II, a general picture emerges of the collective dynamics of the kinesin motors driving IFT in C. elegans chemosensory cilia and the way the motors deal with crowding

    Hemolytic Performance in Two Generations of the Sputnik Left Ventricular Assist Device: A Combined Numerical and Experimental Study

    No full text
    Background: Currently, left ventricular assist devices (LVADs) are a successful surgical treatment for patients with end-stage heart failure on the waiting list or with contraindicated heart transplantation. In Russia, Sputnik 1 LVAD was also successfully introduced into clinical practice as a bridge-to-transplant and a destination therapy device. Development of Sputnik 2 LVAD was aimed at miniaturization to reduce invasiveness, optimize hemocompatibility, and improve versatility for patients of various sizes. Methods: We compared hemolysis level in flow path of the Sputnik LVADs and investigated design aspects influencing other types of blood damage, using predictions of computational fluid dynamics (CFD) and experimental assessment. The investigated operating point was a flow rate of 5 L/min and a pressure head of 100 mm Hg at an impeller rotational speed of 9100 min&minus;1. Results: Mean hemolysis indices predicted with CFD were 0.0090% in the Sputnik 1 and 0.0023% in the Sputnik 2. Averaged values of normalized index of hemolysis obtained experimentally for the Sputnik 1 and the Sputnik 2 were 0.011 &plusmn; 0.003 g/100 L and 0.004 &plusmn; 0.002 g/100 L, respectively. Conclusions: Obtained results indicate obvious improvements in hemocompatibility and sufficiently satisfy the determined miniaturization aim for the Sputnik 2 LVAD development

    The influence of the ion-plasma synthesis regimes on the features of structural-phase state of multi-component nanocomposite Al-Cr-Si-Ti-Cu-N coatings

    No full text
    Within the concept of formation of multi-component, nanocomposite coatings, which assumes a simultaneous nucleation of islands of mutually insoluble or slightly-soluble phases under conditions of self-assembling microstructure during their synthesis, Al–Cr–Si–Ti–Cu–N coatings are designed and formed. Using the methods of X-ray diffraction analysis, scanning and transmission electron microscopy, a comprehensive investigation is performed of the influence of the operating modes of an ion-plasma synthesis of the resulting coatings on the features of their microstructure, microhardness, and elemental and phase composition. The procedures for optimization of the regimes of formation of multi-component, nanocomposite coatings of the above system are discussed

    The influence of the ion-plasma synthesis regimes on the features of structural-phase state of multi-component nanocomposite Al-Cr-Si-Ti-Cu-N coatings

    No full text
    Within the concept of formation of multi-component, nanocomposite coatings, which assumes a simultaneous nucleation of islands of mutually insoluble or slightly-soluble phases under conditions of self-assembling microstructure during their synthesis, Al–Cr–Si–Ti–Cu–N coatings are designed and formed. Using the methods of X-ray diffraction analysis, scanning and transmission electron microscopy, a comprehensive investigation is performed of the influence of the operating modes of an ion-plasma synthesis of the resulting coatings on the features of their microstructure, microhardness, and elemental and phase composition. The procedures for optimization of the regimes of formation of multi-component, nanocomposite coatings of the above system are discussed
    corecore