26 research outputs found

    Preventing Falls in Older Californians: State of the Art

    Get PDF
    In February 2003, the Foundation convened over 150 leaders in academic, legislative, community-based services, consumer advocates, aging network, housing, public health, public safety, and other leaders who worked for two days on a statewide blueprint on fall prevention.  In preparation for the convening, a Preconference White Paper was created and used to build the blueprint.  The California Blueprint describes state-of-the-art approaches to reducing the risks of falls, and the challenges to implementing fall prevention in California.  One of the top recommendations from this blueprint was the creation of a coordination center that could serve as a statewide resource and lead efforts in fall prevention.  This recommendation eventually led to the creation of the Fall Prevention Center of Excellence (FPCE)

    Association of the OPRM1 Variant rs1799971 (A118G) with Non-Specific Liability to Substance Dependence in a Collaborative de novo Meta-Analysis of European-Ancestry Cohorts

    Get PDF
    Peer reviewe

    Clinical trial participant characteristics and saliva and DNA metrics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical trial and epidemiological studies need high quality biospecimens from a representative sample of participants to investigate genetic influences on treatment response and disease. Obtaining blood biospecimens presents logistical and financial challenges. As a result, saliva biospecimen collection is becoming more frequent because of the ease of collection and lower cost. This article describes an assessment of saliva biospecimen samples collected through the mail, trial participant demographic and behavioral characteristics, and their association with saliva and DNA quantity and quality.</p> <p>Methods</p> <p>Saliva biospecimens were collected using the Oragene<sup>® </sup>DNA Self-Collection Kits from participants in a National Cancer Institute funded smoking cessation trial. Saliva biospecimens from 565 individuals were visually inspected for clarity prior to and after DNA extraction. DNA samples were then quantified by UV absorbance, PicoGreen<sup>®</sup>, and qPCR. Genotyping was performed on 11 SNPs using TaqMan<sup>® </sup>SNP assays and two VNTR assays. Univariate, correlation, and analysis of variance analyses were conducted to observe the relationship between saliva sample and participant characteristics.</p> <p>Results</p> <p>The biospecimen kit return rate was 58.5% among those invited to participate (n = 967) and 47.1% among all possible COMPASS participants (n = 1202). Significant gender differences were observed with males providing larger saliva volume (4.7 vs. 4.5 ml, p = 0.019), samples that were more likely to be judged as cloudy (39.5% vs. 24.9%, p < 0.001), and samples with greater DNA yield as measured by UV (190.0 vs. 138.5, p = 0.002), but reduced % human DNA content (73.2 vs. 77.6 p = 0.005) than females. Other participant characteristics (age, self-identified ethnicity, baseline cigarettes per day) were associated with saliva clarity. Saliva volume and saliva and DNA clarity were positively correlated with total DNA yield by all three quantification measurements (all r > 0.21, P < 0.001), but negatively correlated with % human DNA content (saliva volume r = -0.148 and all P < 0.010). Genotyping completion rate was not influenced by saliva or DNA clarity.</p> <p>Conclusion</p> <p>Findings from this study show that demographic and behavioral characteristics of smoking cessation trial participants have significant associations with saliva and DNA metrics, but not with the performance of TaqMan<sup>® </sup>SNP or VNTR genotyping assays.</p> <p>Trial registration</p> <p>COMPASS; registered as NCT00301145 at clinicaltrials.gov.</p

    Delayed effects of radiation exposure in a C57L/J mouse model of partial body irradiation with ~2.5% bone marrow shielding

    No full text
    IntroductionMouse models of radiation injury are critical to the development of medical countermeasures (MCMs) against radiation. Now that MCMs against hematopoietic acute radiation syndrome (H-ARS) have achieved regulatory approval, attention is shifting to develop MCMs against the adverse effects of gastrointestinal acute radiation syndrome (GI-ARS) and delayed effects of acute radiation exposure (DEARE). The C57L/J mouse model of partial body irradiation (PBI) with 2.5% bone marrow shielding (BM2.5) is being leveraged to examine both GI-ARS and DEARE effects. Within days of PBI, mice may develop H- and GI-ARS followed several months later by DEARE as a multi-organ injury, which typically involves the lung and kidney (L- and K-DEARE, respectively). The objective of this manuscript is to describe the dose response relationship and progression of radiation injury in the C57L/J mouse and to evaluate its suitability for use in DEARE MCM testing.Materials and methodsIn two separate studies conducted over 2 years, male and female C57L/J mice were exposed to PBI BM2.5 with one hindlimb shielded from radiation, representing ~2.5% bone marrow shielding/sparing. Mice were X-ray irradiated at doses ranging from 9 to 13 Gy at 10 to 12 weeks of age for the purposes of assessing ARS survival at 30 days and DEARE survival at 182 days post-irradiation. Clinical indicators of ARS and DEARE were determined by clinical observations, body weights, hematology, clinical chemistry, magnetic resonance imaging (MRI) of lung, and histopathology of selected tissues.ResultsC57L/J mice developed canonical ARS responses of hematopoietic atrophy and gastrointestinal injury resulting in dose dependent mortality at doses ≥11 Gy between 1- and 15-days post-irradiation. In animals that survived ARS, DEARE associated mortality occurred in dose dependent fashion at ≥9 Gy for both sexes between 60- and 159-days post-irradiation with histopathology examinations indicating lung injury as the primary cause of death in moribund animals.ConclusionThe PBI BM2.5 C57L/J mouse model reliably produced known H- and GI-ARS effects at doses greater than those resulting in DEARE effects. Because of this, the C57L/J mouse can be used to test MCMs against L-DEARE injury, while avoiding ARS associated mortality

    Temporal Effects on Radiation Responses in Nonhuman Primates: Identification of Biofluid Small Molecule Signatures by Gas Chromatography–Mass Spectrometry Metabolomics

    No full text
    Whole body exposure to ionizing radiation damages tissues leading to physical symptoms which contribute to acute radiation syndrome. Radiation biodosimetry aims to determine characteristic early biomarkers indicative of radiation exposure and is necessary for effective triage after an unanticipated radiological incident. Radiation metabolomics can address this aim by assessing metabolic perturbations following exposure. Gas chromatography–mass spectrometry (GC-MS) is a standardized platform ideal for compound identification. We performed GC time-of-flight MS for the global profiling of nonhuman primate urine and serum samples up to 60 d after a single 4 Gy γ-ray total body exposure. Multivariate statistical analysis showed higher group separation in urine vs. serum. We identified biofluid markers involved in amino acid, lipid, purine, and serotonin metabolism, some of which may indicate host microbiome dysbiosis. Sex differences were observed for amino acid fold changes in serum samples. Additionally, we explored mitochondrial dysfunction by tricarboxylic acid intermediate analysis in the first week with a GC tandem quadrupole MS platform. By adding this temporal component to our previous work exploring dose effects at 7 d, we observed the highest fold changes occurring at 3 d, returning closer to basal levels by 7 d. These results emphasize the utility of both MS-based metabolomics for biodosimetry and complementary analytical platforms for increased metabolome coverage

    Original Investigation Pharmacogenetic Smoking Cessation Intervention in a Health Care Setting:A Pilot Feasibility Study

    No full text
    INTRODUCTION: There is increasing evidence that response to pharmacological treatment for nicotine dependence may be moderated by genetic polymorphisms. However, the feasibility, acceptability, and impact of genetically tailoring treatment in real-world clinical settings are unknown. METHODS: We conducted a multiphased, mixed-methods feasibility study with current smokers to develop and evaluate a patient-centered, theoretically grounded personalized medicine treatment protocol. The initial research phase included formative work to develop intervention materials. The second phase included a randomized pilot trial to evaluate the intervention. Trial participants (n = 36) were genotyped for ANKK1 rs1800497 and were randomized to receive genetic feedback (GF) plus standard behavioral counseling (BC) for smoking cessation or BC without GF. All participants received genetically tailored pharmacotherapy (nicotine patch or bupropion). RESULTS: The intervention was feasible to implement and was acceptable to participants based on satisfaction ratings and objective measures of participation. There was no evidence that the GF resulted in adverse psychological outcomes (e.g., depression, fatalism, reduced perceived control over quitting, differential motivation for quitting) based on quantitative or qualitative outcomes. CONCLUSIONS: Study results suggest that it is feasible to offer treatment within a health care setting that includes genetically tailored pharmacotherapy and doing so had no apparent adverse psychological impacts. Further evaluation of pharmacogenetically tailored smoking cessation interventions appears warranted

    Peripheral complement interactions with amyloid β peptide in Alzheimer\u27s disease: Polymorphisms, structure, and function of complement receptor 1

    Get PDF
    Introduction: Genome-wide association studies consistently show that single nucleotide polymorphisms (SNPs) in the complement receptor 1 (CR1) gene modestly but significantly alter Alzheimer\u27s disease (AD) risk. Follow-up research has assumed that CR1 is expressed in the human brain despite a paucity of evidence for its function there. Alternatively, erythrocytes contain \u3e80% of the body\u27s CR1, where, in primates, it is known to bind circulating pathogens. Methods: Multidisciplinary methods were employed. Results: Conventional Western blots and quantitative polymerase chain reaction failed to detect CR1 in the human brain. Brain immunohistochemistry revealed only vascular CR1. By contrast, erythrocyte CR1 immunoreactivity was readily observed and was significantly deficient in AD, as was CR1-mediated erythrocyte capture of circulating amyloid β peptide. CR1 SNPs associated with decreased erythrocyte CR1 increased AD risk, whereas a CR1 SNP associated with increased erythrocyte CR1 decreased AD risk. Discussion: SNP effects on erythrocyte CR1 likely underlie the association of CR1 polymorphisms with AD risk
    corecore