215 research outputs found

    Exploring the Clinical Feasibility and Reliability of Three-Dimensional Echocardiography for Advanced Quantitative Analysis of Left Ventricular Myocardial Deformation

    Get PDF
    Background. Assessment of left ventricular (LV) function is a fundamental part of clinical cardiology, holding important diagnostic, prognostic and management implications. The most important advance in LV quantification over the last decade was the development of techniques aimed to quantify tissue motion and deformation from ultrasound images, such as tissue Doppler imaging (DTI) and two-dimensional speckle-tracking echocardiography (2DSTE). More recently, speckle-tracking algorithms have been applied to three-dimensional (3D) volumetric acquisitions of the LV (i.e. referred to as 3D speckle-tracking echocardiography, 3DSTE), making possible to analyze all LV myocardial strain components from the same dataset. At present, 3DSTE technology is a research tool in its infancy of development, and its potential clinical value still remains to be demonstrated. With respect to prior technologies (DTI and 2DSTE), 3DSTE comes with several advantages, but also with new challenges. It is currently unknown if the theoretical benefits of an additional third dimension to study the complex LV mechanics (no more “out-of-plane” motion of speckles, only a single acquisition needed etc) are not actually outweighted by the new technical challenges derived from using a volumetric acquisition of the LV (i.e. lower spatial and temporal resolution of speckles than with 2DSTE). A major concern of 2DSTE strain is the large intervendor variability of strain measurements provided by various commercially-available software packages. At present, it is unclear if a similar problem may affect also 3DSTE, and to what extent. Furthermore, despite researchers are increasingly employing 3DSTE to study various pathologic conditions, the reference values and normal pattern of LV myocardial strain in healthy adults by 3DSTE, as well as the possible influence of various clinical and technical factors on LV strain values are currently unknown. Finally, the validation process of 3DSTE is difficult due to the lack of adequate three-dimensional gold standard that can be applied noninvasively in human subjects to validate regional LV function in 3D. Therefore, there is a great need for rigorous validation work, methodological and intervendor standardization to be undertaken before its application in clinical settings. Methods and Results. Project design: single-centre, prospective, observational clinical study, aiming to explore the clinical feasibility and usefulness of LV 3D strain analysis using state-of-the-art commercially available 3DE equipment. The project involves a series of 4 clinical studies. The aim of the Study #1 was to assess the intervendor consistency and variability of LV 3D strain values between the two 3DSTE equipments commercially available: VividE9 (GE, Vingmed, Horten, Norway) and Artida (Toshiba Medical Systems Corporation, Tokyo, Japan) ultrasound systems. Sixty patients (38 ± 12 years, 64% males) with a wide range of LV end-diastolic volumes and ejection fractions were enrolled. Global longitudinal (3DLɛ), radial (3DRɛ), circumferential (3DCɛ) and area (3DAɛ) strain values were obtained offline using the corresponding proprietary software package. Overall, the intervendor agreement of 3DRɛ, 3DCɛ and 3DAɛ measured with Artida and VividE9 was poor. 3DLɛ showed the closest values between the two platforms (bias = 1.5%, limits of agreement (LOA) from −2.9 to −5.9%, P < 0.05). Artida provided significantly higher values of both 3DCɛ and 3DAɛ than VividE9 (bias = 6.6% for 3DCɛ, 6.0% for 3DAɛ and -24% for 3DRɛ respectively, P < 0.001). All 3D strain components showed good reproducibility (intraclass correlation coefficients: 0.82–0.98), except for 3DRɛ by Artida, which showed only a moderate reproducibility. Therefore, reference values should be identified for each system, and baseline and follow-up data in longitudinal studies should be obtained using the same 3DSTE equipment. The aim of the Study #2 was to assess the normative values for LV 3D strain in 218 healthy volunteers (age range 18-76, 57% women) by vendor-specific 3DSTE equipment (Vivid E9, 4D AutoLVQ software,). For comparison LV strain was also measured by vendor-specific 2DSTE software and by a vendor-independent 3DSTE software. Feasibility of global 3D strain analysis by 4D AutoLVQ was 89%, lower than 2DLε (95%) and similar to 2DCε (92%). Feasibility of segmental 3DSTE analysis ranged from 46% to 100%. Reference values of 3D strain parameters were identified according to gender and age group. 3DLε decreased, while 3DCε increased with ageing (p<0.001). Men had lower 3DLε, 3DRε, 3DAε and 2DLε than women (p<0.02). At stepwise multivariable linear regression analysis, demographic (age and gender), cardiac (LV size and mass) and technical (image quality and temporal resolution) factors accounted for the variance of LV 3D strain measurements. Since major inter-software differences in LV strain measurements were identified (p<0.001 for all), limits of normality for LV strain analysis by vendor-specific 3DSTE software should not be used interchangeably with those by 2DSTE or vendor-independent 3DSTE softwares. The aim of the Study #3 was to assess if LV deformation by 3D STE in patients after ST-elevation myocardial infarction (STEMI) could provide an accurate and objective assessment of infarct size and transmurality, in comparison with magnetic resonance with late gadolinium enhancement (LGE-CMR). A total of 77 STEMI patients were enrolled by 2D and 3D echo, and in 46 patients LGE-CMR studies were performed within 24 hours. The relative amount of DE tissue per segment was used to define transmural necrosis (51-100% DE). LV function was assessed from three apical LV 2D views by measuring 2DLε, and from 3D LV full-volume datasets, assessing visual wall motion score (WMS) and measuring 3DLε, 3DCε, 3DAε and 3DRε. Strain parameters were correlated with conventional indices of LV systolic function (LVEF) and infarct size (troponin I, WMSI, infarct size index at LGE-CMR). Despite a good accuracy for 2DLε and 3D strain parameters (AUC=0.81-0.73), visual wall motion assessment by experienced reader on good-quality 3D data sets (AUC=0.87) was found to be superior than strain quantification to predict transmural necrosis at LGE-CMR. The aims of the Study #4 to describe the LV myocardial mechanics in patients with hypertrophic cardiomyopathy (HCM) using 2DSTE and 3DSTE, and to compare it with the normal deformation pattern in healthy subjects. In 32 HCM pts and 32 age- and gender-matched controls, we analyzed peak global 2DLε and 3DLε, 3DCε, 3DRε, 3DAε. LV ejection fraction (LVEF), LV mass and outflow tract area (LVOTA) were measured by 3D echo. Symptomatic status was defined by NYHA class (II-IV). Although LVEF was similar in pts and controls (64±6% vs 62±4%, p=0.29), LV systolic strain was significantly impaired in pts (p<0.0001), except for 3DCε, which was only marginally lower. In HCM patients, all strain parameters were correlated with LV end-systolic volume (r=0.55 to 0.67), LVEF (r=-0.82 to -0.88) and mass (r=0.33 to 0.56). Symptomatic patients had more impaired 3DAε, 3DRε and 3DCε, but also had more LVOT obstruction and concentric remodelling, and higher E/e'. At ROC curve analysis, 3DAε, 3DRε and 3DCε had a good accuracy to identify symptomatic pts (AUCs 0.72-0.73). 3D LV mass had an inverse correlation with LV longitudinal deformation: r=-0.74 for 2DLε and -0.70 for 3DLε (p<0.001 for both). In HCM with preserved LVEF, the longitudinal strain was significantly reduced, however symptom development is multifactorial and related to the additional impairment of LV deformation in circumferential-radial direction. Conclusions. This project addressed several issues of of pivotal importance for 3DSTE. It provided a comprehensive analysis of 3DSTE measurement variability (intra- and inter-observer, at test-retest, inter-vendor and inter-software), and reported on the feasibility of 3DSTE in clinical setting and on the comparison with LV strain by 2DSTE. In addition, it is the first to report normal ranges of 3D strain parameters by 3DSTE using both vendor-specific and vendor-independent software packages. Finally, this project presents the added value of 3DSTE in comparison with previous methods for assessing LV function in 2 common pathologic conditions (acute STEMI, as the prototype of regional necrotic transmural injury; and HCM, as the prototype of myocardial disease with impaired longitudinal systolic mechanics despite preserved LVEF). This series of studies contributes with original data to the current scientific evidence-based knowledge on 3DSTE, which is essential for the development and appropriate use of this novel technology

    Multimodality Imaging of the Tricuspid Valve and Right Heart Anatomy

    Get PDF
    The characterization of tricuspid valve and right-heart anatomy has been gaining significant interest in the setting of new percutaneous transcatheter interventions for tricuspid regurgitation. Multimodality cardiac imaging provides a wealth of information about the anatomy and function of the tricuspid valve apparatus, right ventricle, and right atrium, which is pivotal for diagnosis and prognosis and for planning of percutaneous interventions. The present review describes the role of echocardiography, cardiac magnetic resonance, and multidetector row cardiac computed tomography for right heart and tricuspid valve assessment

    3-D Echocardiography Is Feasible and More Reproducible than 2-D Echocardiography for In-Training Echocardiographers in Follow-up of Patients with Heart Failure with Reduced Ejection Fraction

    Get PDF
    Left ventricular volumes (LVVs) and ejection fraction (LVEF) are key elements in the evaluation and follow-up of patients with heart failure with reduced ejection fraction (HFrEF). Therefore, a feasible and reproducible imaging method to be used by both experienced and in-training echocardiographers is mandatory. Our aim was to establish if, in a large echo lab, echocardiographers in-training provide feasible and more reproducible results for the evaluation of patients with HFrEF when using 3-dimensional echocardiography (3-DE) versus 2-dimensional echocardiography (2-DE). Sixty patients with HFrEF (46 males, age: 58 ± 17 y) underwent standard transthoracic 2-D acquisitions and 3-D multibeat full volumes of the left ventricle. One expert user in echocardiography (expert) and three echocardiographers with different levels of training in 2-DE (beginner, medium and advanced) measured the 2-D LVVs and LVEFs on the same consecutive images of patients with HFrEF. Afterward, the expert performed a 1-mo training in 3-DE analysis of the users, and both the expert and trainees measured the 3-D LVVs and LVEF of the same patients. Measurements provided by the expert and all trainees in echo were compared. Six patients were excluded from the study because of poor image quality. The mean end-diastolic LVV of the remaining 54 patients was 214 ± 75 mL with 2-DE and 233 ± 77 mL with 3-DE. Mean LVEF was 35 ± 10% with 2-DE and 33 ± 10% with 3-DE. Our analysis revealed that, compared with the expert user, the trainees had acceptable reproducibility for the 2-DE measurements, according to their level of expertise in 2-DE (intra-class coefficients [ICCs] ranging from 0.75 to 0.94). However, after the short training in 3-DE, they provided feasible and more reproducible measurements of the 3-D LVVs and LVEF (ICCs ranging from 0.89-0.97) than they had with 2-DE. 3-DE is a feasible, rapidly learned and more reproducible method for the assessment of LVVs and LVEF than 2-DE, regardless of the basic level of expertise in 2-DE of the trainees in echocardiography. In echo labs with a wide range of staff experience, 3-DE might be a more accurate method for the follow-up of patients with HFrEF

    Atrial functional tricuspid regurgitation: a novel and underappreciated clinical entity

    Get PDF
    Abstract Functional or secondary tricuspid regurgitation (FTR) is a progressive disease with a significant negative impact on patient morbidity and mortality. Recently, atrial fibrillation (AF) has been recognized as a cause of FTR (with/without coexisting functional mitral regurgitation) by promoting right atrial (RA) remodeling and secondary tricuspid valve (TV) annulus dilation, even in the absence of right ventricular (RV) dilation or dysfunction. This distinct form of FTR has been called "atriogenic" or "atrial". Recent evidence suggests that the RA is an important player in FTR pathophysiology not only for patients with AF, but also for those in sinus rhythm. Preliminary reports on atrial FTR show that cardioversion with documented maintenance of sinus rhythm promotes TV annulus and RA reverse remodeling and may significantly reduce FTR severity at follow-up. Large-scale studies on the prognostic benefits of rhythm vs rate-control strategy in atrial FTR patients are needed to substantiate specific guidelines indications for this subset of patients

    Ventricular arrhythmias in young competitive athletes: Prevalence, determinants, and underlying substrate

    Get PDF
    Whether ventricular arrhythmias (VAs) represent a feature of the adaptive changes of the athlete's heart remains elusive. We aimed to assess the prevalence, determinants, and underlying substrates of VAs in young competitive athletes.Background--Whether ventricular arrhythmias (VAs) represent a feature of the adaptive changes of the athlete's heart remains elusive. We aimed to assess the prevalence, determinants, and underlying substrates of VAs in young competitive athletes. Method and Results--We studied 288 competitive athletes (age range, 16-35 years; median age, 21 years) and 144 sedentary individuals matched for age and sex who underwent 12-lead 24-hour ambulatory electrocardiographic monitoring. VAs were evaluated in terms of number, complexity (ie, couplet, triplet, or nonsustained ventricular tachycardia), exercise inducibility, and morphologic features. Twenty-eight athletes (10%) and 13 sedentary individuals (11%) showed > 10 isolated premature ventricular beats (PVBs) or 651 complex VA (P=0.81). Athletes with > 10 isolated PVBs or 651 complex VA were older (median age, 26 versus 20 years; P=0.008) but did not differ with regard to type of sport, hours of training, and years of activity compared with the remaining athletes. All athletes with > 10 isolated PVBs or 651 complex VA had a normal echocardiographic examination; 17 of them showing > 500 isolated PVBs, exercise-induced PVBs, and/or complex VA underwent additional cardiac magnetic resonance, which demonstrated nonischemic left ventricular late gadolinium enhancement in 3 athletes with right bundle branch block PVBs morphologic features. Conclusions--The prevalence of > 10 isolated PVBs or 651 complex VA at 24-hour ambulatory electrocardiographic monitoring did not differ between young competitive athletes and sedentary individuals and was unrelated to type, intensity, and years of sports practice. An underlying myocardial substrate was uncommon and distinctively associated with right bundle branch block VA morphologic features

    Left atrial dysfunction detected by speckle tracking in patients with systemic sclerosis

    Get PDF
    BACKGROUND: Cardiac involvement is a relevant clinical finding in systemic sclerosis (SSc) and is associated with poor prognosis. Left atrial (LA) remodeling and/or dysfunction can be an early sign of diastolic dysfunction. Two-dimensional speckle tracking echocardiography (STE) is a novel and promising tool for detecting very early changes in LA myocardial performance. AIM: To assess whether STE strain parameters may detect early alterations in LA function in SSc patients. METHODS: Forty-two SSc patients (Group 1, age 50 +/- 14 years, 95% females) without clinical evidence for cardiac involvement and 42 age- and gender-matched control subjects (Group 2, age 49 +/- 13 years, 95% females) were evaluated with comprehensive 2D and Doppler echocardiography, including tissue Doppler imaging analysis. Positive peak left atrial longitudinal strain ( pos peak), second positive left atrial longitudinal strain (sec pos peak), and negative left atrial longitudinal strain ( neg peak) were measured using a 12-segment model for the LA, by commercially available semi-automated 2D speckle-tracking software (EchoPac PC version 108.1.4, GE Healthcare, Horten, Norway). RESULTS: All SSc patients had a normal left ventricular ejection fraction (63.1 +/- 4%). SSc patients did not differ from controls in E/A (Group 1 = 1.1 +/- 0.4 vs Group 2 = 1.3 +/- 0.4, p = .14) or pulmonary arterial systolic pressure (Group 1 = 24.1 +/- 8 mmHg vs Group 2 = 21 +/- 7 mmHg, p = .17). SSc patients did not show significantly different indexed LA volumes (Group 1 = 24.9 +/- 5.3 ml/m2 vs Group 2 = 24.7 +/- 4.4 ml/m2, p = .8), whereas E/e' ratio was significantly higher in SSc (Group 1 = 7.6 +/- 2.4 vs Group 2 = 6.5 +/- 1.7, p<0.05), although still within normal values. LA strain values were significantly different between the two groups ( pos peak Group 1 = 31.3 +/- 4.2% vs Group 2 = 35.0 +/- 7.6%, p < .01, sec pos peak Group 1 = 18.4 +/- 4 vs Group 2 = 21.4 +/- 7.6, p < 0.05). CONCLUSION: 2D speckle-tracking echocardiography is a sensitive tool to assess impairment of LA mechanics, which is detectable in absence of changes in LA size and volume, and may represent an early sign of cardiac involvement in patients with SSc
    corecore