72 research outputs found

    Relationship of orthopedic examination, goniometric measurements, and radiographic signs of degenerative joint disease in cats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Available information suggests a mismatch between radiographic and orthopedic examination findings in cats with DJD. However, the extent of the discrepancy between clinical and radiographic signs of OA in companion animals has not been described in detail. This study aimed to evaluate the relationship between orthopedic examination findings, joint goniometry, and radiographic signs of DJD in 100 cats, in a prospective observational design. Cat temperament, pain response to palpation, joint crepitus, effusion and thickening were graded. Radiographs of appendicular joints and the axial skeleton were made under sedation. Joint motion was measured by use of a plastic goniometer before and after sedation. Associations between radiographic degenerative joint disease (DJD) and examination findings were assessed to determine sensitivity, specificity and likelihood estimations.</p> <p>Results</p> <p>Pain response to palpation was elicited in 0-67% of the joints with DJD, with a specificity ranging from 62-99%; crepitus was detected in 0-56% of the joints and its specificity varied between 87 and 99%; for effusion, values ranged between 6 and 38% (specificity, 82-100%), and thickening, 0-59% (specificity, 74-99%). Joints with DJD tended to have a decreased range of motion. The presence of pain increased the odds of having DJD in the elbow (right: 5.5; left: 4.5); the presence of pain in the lower back increased the odds of spinal DJD being present (2.97 for lumbar; 4.67 for lumbo-sacral).</p> <p>Conclusions</p> <p>Radiographic DJD cannot be diagnosed with certainty using palpation or goniometry. However, negative findings tend to predict radiographically normal joints. Palpation and goniometry may be used as a tool to help to screen cats, mostly to rule out DJD.</p

    The Effects of FGF4 Retrogenes on Canine Morphology

    Get PDF
    Two FGF4 retrogenes (FGF4L1 on chromosome 18 and FGF4L2 on chromosome 12) have been identified to cause dwarfism across many dog breeds. Some breeds are nearly homozygous for both retrogenes (e.g., Dachshunds) and others are homozygous for just one (e.g., Beagles and Scottish Terriers). Since most breeds do not segregate both of these retrogenes, it is challenging to evaluate their individual effects on long bone length and body size. We identified two dog breeds selected for hunting ability, the Alpine Dachsbracke and the Schweizer Niederlaufhund, that segregate both of these retrogenes. Using individual measurements of height at the shoulder, back length, head width, thorax depth and width, and thoracic limb measurements, we evaluated the combined effects of FGF4 retrogenes within these breeds. We applied multivariable linear regression analysis to determine the effects of retrogene copy numbers on the measurements. Copy numbers of both retrogenes had significant effects reducing height at the shoulders and antebrachial length, with FGF4L1 having a much greater effect than FGF4L2. FGF4L1 alone influenced the degree of carpal valgus and FGF4L2 alone increased head width. Neither retrogene had an effect on thorax width or depth. Selectively breeding dogs with FGF4L1 and without FGF4L2 would likely lead to a reduction in the FGF4L2-related risk of intervertebral disc herniation while maintaining the reduction in leg length resulting from FGF4L1

    Proceedings of the 9th international symposium on veterinary rehabilitation and physical therapy

    Get PDF

    Risk factors for cranial cruciate ligament rupture in dogs participating in canine agility.

    No full text
    BACKGROUND: Cranial cruciate ligament rupture (CCLR) is one of the most common causes of pelvic limb lameness in dogs. Risk factors for CCLR include breed (especially large and giant breeds), body weight, gender and spay/neuter status, and age. Few studies have evaluated physical activity and fitness indicators, however, as risk factors for disease. This study used an online questionnaire distributed primarily via social media to assess risk factors for CCLR in dogs actively engaged in agility training or competition to determine demographic and physical activity factors associated with rupture. RESULTS: Data from 260 dogs with CCLR were compared to similar data from 1006 dogs without CCLR. All dogs were actively training or competing in agility at the time of CCLR or the time of data submission, respectively. Physical characteristics associated with increased risk of CCLR included younger age, spayed female sex, greater body weight, and greater weight to height ratio. Agility activities associated with increased odds ratios included competition in events sponsored by the North American Dog Agility Council (NADAC), competing at novice and intermediate levels, and competing in fewer than 10 events/year. Odds ratios were lower in dogs that competed in events sponsored by United Kingdom Agility International (UKI). Other activities associated with increased odds ratio for CCLR included involvement in flyball activities and short walks or runs over hilly or flat terrain on a weekly basis. Activities associated with decreased odds ratio included involvement in dock diving, barn hunt, nosework, or lure coursing/racing activities and participation in core balance and strength exercises at least weekly. CONCLUSIONS: These results are consistent with previous studies demonstrating that body weight and spay/neuter status are risk factors for CCLR in dogs. This is the first report to demonstrate that risk of CCLR in agility dogs is decreased in dogs that engage in regular core strengthening exercises, compete more frequently, compete at higher levels, and compete in more athletically challenging venues
    corecore