20 research outputs found

    Data Analysis Software for the ESPRESSO Science Machine

    Get PDF
    ESPRESSO is an extremely stable high-resolution spectrograph which is currently being developed for the ESO VLT. With its groundbreaking characteristics it is aimed to be a "science machine", i.e., a fully-integrated instrument to directly extract science information from the observations. In particular, ESPRESSO will be the first ESO instrument to be equipped with a dedicated tool for the analysis of data, the Data Analysis Software (DAS), consisting in a number of recipes to analyze both stellar and quasar spectra. Through the new ESO Reflex GUI, the DAS (which will implement new algorithms to analyze quasar spectra) is aimed to get over the shortcomings of the existing software providing multiple iteration modes and full interactivity with the data.Comment: 5 pages, 2 figures; proceedings of ADASS XXI

    Field tests for the ESPRESSO data analysis software

    Get PDF
    The data analysis software (DAS) for VLT ESPRESSO is aimed to set a new benchmark in the treatment of spectroscopic data towards the extremely-large-telescope era, providing carefully designed, fully interactive recipes to take care of complex analysis operations (e.g. radial velocity estimation in stellar spectra, interpretation of the absorption features in quasar spectra). A few months away from the instrument's first light, the DAS is now mature for science validation, with most algorithms already implemented and operational. In this paper, I will showcase the DAS features which are currently employed on high-resolution HARPS and UVES spectra to assess the scientific reliability of the recipes and their range of application. I will give a glimpse on the science that will be possible when ESPRESSO data become available, with a particular focus on the novel approach that has been adopted to simultaneously fit the emission continuum and the absorption lines in the Lyman-alpha forest of quasar spectra.Comment: 4 pages, 1 figure; proceedings of ADASS XXVI, accepted by ASP Conference Serie

    Oscillations on the star Procyon

    Full text link
    Stars are sphere of hot gas whose interiors transmit acoustic waves very efficiently. Geologists learn about the interior structure of Earth by monitoring how seismic waves propagate through it and, in a similar way, the interior of a star can be probed using the periodic motions on the surface that arise from such waves. Matthews et al. claim that the star Procyon does not have acoustic surface oscillations of the strength predicted. However, we show here, using ground-based spectroscopy, that Procyon is oscillating, albeit with an amplitude that is only slightly greater than the noise level observed by Matthews et al. using spaced-based photometry

    A PLC Distributed Layout: the Case of the Instrument Control Electronics of ESPRESSO

    Get PDF
    ESPRESSO, the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations of the European Southern Observatory (ESO) is passing the integration phase in Geneva before being shipped to Chile and installed at the Very Large Telescope (VLT) site on the Cerro Paranal. It is going to be one of the first permanent instruments of VLT with a distributed control electronics based on Beckhoff PLCs. About 40 motorized stages, more than 90 sensors and several calibration lamps are controlled by the Instrument Control Electronics (ICE) and Software (ICS). All the ESPRESSO functionalities are managed by two main CPUs that Sshare the workload. The Beckhoff EtherCAT decentralization modules ensure the EtherCAT continuity between the 7 PLC electronics subracks placed in different cabinets, allowing optimal distributed architecture. Furthermore, one of the two CPUs is equipped with an IEEE 1588 protocol interface, used for the time synchronization of the distributed clocks in the networks. In this paper the features of the CPUs used, the distribution of functions among them, the electronic cabinets configuration and a detailed overview of the PLC control system used are presented

    Integration of the instrument control electronics for the ESPRESSO spectrograph at ESO-VLT

    Get PDF
    ESPRESSO, the Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations of the ESO - Very Large Telescope site, is now in its integration phase. The large number of functions of this complex instrument are fully controlled by a Beckhoff PLC based control electronics architecture. Four small and one large cabinets host the main electronic parts to control all the sensors, motorized stages and other analogue and digital functions of ESPRESSO. The Instrument Control Electronics (ICE) is built following the latest ESO standards and requirements. Two main PLC CPUs are used and are programmed through the TwinCAT Beckhoff dedicated software. The assembly, integration and verification phase of ESPRESSO, due to its distributed nature and different geographical locations of the consortium partners, is quite challenging. After the preliminary assembling and test of the electronic components at the Astronomical Observatory of Trieste and the test of some electronics and software parts at ESO (Garching), the complete system for the control of the four Front End Unit (FEU) arms of ESPRESSO has been fully assembled and tested in Merate (Italy) at the beginning of 2016. After these first tests, the system will be located at the Geneva Observatory (Switzerland) until the Preliminary Acceptance Europe (PAE) and finally shipped to Chile for the commissioning. This paper describes the integration strategy of the ICE workpackage of ESPRESSO, the hardware and software tests that have been performed, with an overall view of the experience gained during these project's phases. <P /

    Integration, alignment, and verification of the ESPRESSO Front-End

    Get PDF
    ESPRESSO, Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations, is now under the assembly, integration and verification phase and will be installed beginning next year at Paranal Observatory on ESO's Very Large Telescopes. The Front End is the modular system in the Combined Coudé Laboratory receiving the light from the four VLT Units, providing the needed connection between the input signal, i.e., object light, sky light, and calibration light, to feed the spectrograph through optical fibers. The modular concept of the FE Units drove the system design and the alignment workflow. We will show the integration method of the single FE modules adopted to guarantee the necessary repeatability between the different Units. The performances of the system in terms of image quality and encircled energy in the observed point spread function are reported. Finally, the strategy followed in the Paranal Combined Coudè Laboratory to define the convergence point of the four UTs is described, along with the procedure used to align the ground plates, the main structure, and the mode selector

    Integrated data analysis in the age of precision spectroscopy: the ESPRESSO case

    Get PDF
    The Echelle SPectrograph for Rocky Exoplanets and Stable Spectral Observations (ESPRESSO) is an ultrastable spectrograph for the coudé-combined focus of the VLT. With its unprecedented capabilities (resolution up to fi 200,000, wavelength range from 380 to 780 nm; centimeter-per-second precision in wavelength calibration), ESPRESSO is a prime example of the now spreading science machine concept: a fully-integrated system carefully designed to perform direct scientific measurements on the data, in a matter of minutes from the execution of the observations. This approach is motivated by the very specific science cases of the instrument (search for terrestrial exoplanets with the radial velocity method; measure of the variation of fundamental constants using the spectral signatures of the inter-galactic medium) and is achieved by a dedicated tool for spectral analysis, the data analysis software or DAS, targeted to both stellar and quasar spectra. In this paper, we describe characteristics and performances of the DAS, with particular emphasis on the novel algorithms for stellar and quasar analysis (continuum fitting and interpretation of the absorption features)
    corecore