193 research outputs found

    A regulatory ‘landscape effect’ over the HoxD cluster

    Get PDF
    AbstractFaithful expression of Hox genes in both time and space is essential for proper patterning of the primary body axis. Transgenic approaches in vertebrates have suggested that this collinear activation process is regulated in a largely gene cluster-autonomous manner. In contrast, more recently co-opted expression specificities, required in other embryonic structures, depend upon long-range enhancer sequences acting from outside the gene clusters. This regulatory dichotomy was recently questioned, since gene activation along the trunk seems to be partially regulated by signals located outside of the cluster. We investigated these alternative regulatory strategies by engineering a large inversion that precisely separates the murine HoxD complex from its centromeric neighborhood. Mutant animals displayed posterior transformations along with subtle deregulations of Hoxd genes, indicating an impact of the centromeric landscape on the fine-tuning of Hoxd gene expression. Proximal limbs were also affected, suggesting that this ‘landscape effect’ is generic and impacts upon regulatory mechanisms of various qualities and evolutionary origins

    Conserved elements within open reading frames of mammalian Hox genes

    Get PDF
    A recent study in BMC Evolutionary Biology shows that many of the open reading frames in mammalian Hox genes are more conserved than expected on the basis of their protein sequence. The presence of highly conserved DNA elements is thus not confined to the noncoding DNA in neighboring regions but clearly overlaps with coding sequences. These findings support an emerging view that gene regulatory and coding sequences are likely to be more intermingled than once believed

    Analysis of the dynamics of limb transcriptomes during mouse development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The development of vertebrate limbs has been a traditional system to study fundamental processes at work during ontogenesis, such as the establishment of spatial cellular coordinates, the effect of diffusible morphogenetic molecules or the translation between gene activity and morphogenesis. In addition, limbs are amongst the first targets of malformations in human and they display a huge realm of evolutionary variations within tetrapods, which make them a paradigm to study the regulatory genome.</p> <p>Results</p> <p>As a reference resource for future biochemical and genetic analyses, we used genome-wide tiling arrays to establish the transcriptomes of mouse limb buds at three different stages, during which major developmental events take place. We compare the three time-points and discuss some aspects of these datasets, for instance related to transcriptome dynamics or to the potential association between active genes and the distribution of intergenic transcriptional activity.</p> <p>Conclusions</p> <p>These datasets provide a valuable resource, either for research projects involving gene expression and regulation in developing mouse limbs, or as examples of tissue-specific, genome-wide transcriptional activities.</p

    Gene Transpositions in the HoxD Complex Reveal a Hierarchy of Regulatory Controls

    Get PDF
    AbstractVertebrate Hox genes are activated following a temporal sequence that reflects their linear order in the clusters. We introduced two Hoxd transcription units, labeled with lacZ, to an ectopic 5â€Č position in the HoxD complex. Early expression of the relocated genes was delayed and resembled that of the neighboring Hoxd-13. At later stages, locus-dependent expression in distal limbs and the genital eminence was observed, indicating that common regulatory mechanisms are used for several genes. These experiments also illustrated that neighboring genes can share the same cis-acting sequence and that moving genes around in the complex induces novel regulatory interferences. These results suggest that high order regulation controls the activation of Hox genes and highlight three important constraints responsible for the conservation of Hox gene clustering

    Epigenetic temporal control of mouse Hox genes in vivo

    Get PDF
    During vertebrate development, the temporal control of Hox gene transcriptional activation follows the genomic order of the genes within the Hox clusters. Although it is recognized that this "Hox clock" serves to coordinate body patterning, the underlying mechanism remains elusive. We have shown that successive Hox gene activation in the mouse embryo is closely associated with a directional transition in chromatin status, as judged by the dynamic progression of transcription-competent modifications: Increases in activation marks correspond to decreases in repressive marks. Furthermore, using a mouse in which a Hox cluster was split into two pieces, we document the necessity to maintain a clustered organization to properly implement this process. These results suggest that chromatin modifications are important parameters in the temporal regulation of this gene family

    The origin of digits: expression patterns versus regulatory mechanisms

    Get PDF
    In the emerging discipline of Evo-Devo, the analysis of gene expression patterns can be deceptive without a clear understanding of the underlying regulatory strategies. Here, we use the paradigm of hand and foot evolution to argue that the consideration of the regulatory mechanisms controlling developmental gene expression is essential to resolve comparative conundrums. In this context, we discuss the adaptive relevance of evolving stepwise, distinct developmental regulatory mechanisms to build an arm, i.e., a composite structure with functional coherence

    Uncoupling Time and Space in the Collinear Regulation of Hox Genes

    Get PDF
    During development of the vertebrate body axis, Hox genes are transcribed sequentially, in both time and space, following their relative positions within their genomic clusters. Analyses of animal genomes support the idea that Hox gene clustering is essential for coordinating the various times of gene activations. However, the eventual collinear ordering of the gene specific transcript domains in space does not always require genomic clustering. We analyzed these complex regulatory relationships by using mutant alleles at the mouse HoxD locus, including one that splits the cluster into two pieces. We show that both positive and negative regulatory influences, located on either side of the cluster, control an early phase of collinear expression in the trunk. Interestingly, this early phase does not systematically impact upon the subsequent expression patterns along the main body axis, indicating that the mechanism underlying temporal collinearity is distinct from those acting during the second phase. We discuss the potential functions and evolutionary origins of these mechanisms, as well as their relationship with similar processes at work during limb development
    • 

    corecore