52 research outputs found
Local superefficiency of data-driven projection density estimators in continuous time
We construct a data-driven projection density estimator for continuous time processes. This estimator reaches superoptimal rates over a class F0 of densities that is dense in the family of all possible densities, and a «reasonable» rate elsewhere. The class F0 may be chosen previously by the analyst. Results apply to Rd- Rd-valued processes and to N-valued processes. In the particular case where squareintegrable local time does exist, it is shown that our estimator is strictly better than the local time estimator over F0
Bayesian estimation in a high dimensional parameter framework
Sufficient conditions are derived for the asymptotic efficiency and equivalence of componentwise Bayesian and classical estimators of the infinite-dimensional parameters characterizing l2 valued Poisson process, and Hilbert valued Gaussian random variable models. Conjugate families are considered for the Poisson and Gaussian univariate likelihoods, in the Bayesian estimation of the components of such infinite-dimensional parameters. In the estimation of the functional mean of a Hilbert valued Gaussian random variable, sufficient and necessary conditions, that ensure a better performance of the Bayes estimator with respect to the classical one, are also obtained for the finite-sample size case. A simulation study is carried out to provide additional information on the relative efficiency of Bayes and classical estimators in a high-dimensional framework.This work has been supported in part by projects MTM2012-32674 of the DGI (co-funded
with FEDER funds), MEC, Spain
Inverse Problems in a Bayesian Setting
In a Bayesian setting, inverse problems and uncertainty quantification (UQ)
--- the propagation of uncertainty through a computational (forward) model ---
are strongly connected. In the form of conditional expectation the Bayesian
update becomes computationally attractive. We give a detailed account of this
approach via conditional approximation, various approximations, and the
construction of filters. Together with a functional or spectral approach for
the forward UQ there is no need for time-consuming and slowly convergent Monte
Carlo sampling. The developed sampling-free non-linear Bayesian update in form
of a filter is derived from the variational problem associated with conditional
expectation. This formulation in general calls for further discretisation to
make the computation possible, and we choose a polynomial approximation. After
giving details on the actual computation in the framework of functional or
spectral approximations, we demonstrate the workings of the algorithm on a
number of examples of increasing complexity. At last, we compare the linear and
nonlinear Bayesian update in form of a filter on some examples.Comment: arXiv admin note: substantial text overlap with arXiv:1312.504
- …