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Abstract

We construct a data-driven projection density estimator for continuous time processes. This estimator
reaches superoptimal rates over a class F0 of densities that is dense in the family of all possible
densities, and a «reasonable» rate elsewhere. The class F0 may be chosen previously by the analyst.
Results apply to Rd-valued processes and to N-valued processes. In the particular case where square-
integrable local time does exist, it is shown that our estimator is strictly better than the local time
estimator over F0.
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1 Introduction

We study a data-driven projection density estimatorf̂T in a general framework where
data are in continuous time. The purpose is to reach a superoptimal rate on a classF0 of
densities that is dense inF , the family of all possible densities, and a«reasonable» rate
elsewhere. The classF0 can be previously chosen by the analyst.

The results are, in some sense, extensions of those which where obtained in the i.i.d.
case (cf Bosq 2002a, 2002b), but in this new context the methods are often different.

Section 2 contains notation and assumptions. In Section 3 we study the estimator
overF0. We obtain a1

T -rate with respect to the mean integrated square error, a
( ln ln T

T

)1/2-
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rate with respect to uniform error, and a Gaussian limit in distribution with coefficient
of normalization

√
T. Results concerning the asymptotic behaviour off̂T overF − F0

appear in Section 4. Finally, Section 5 is devoted to comparisonof f̂T with the local time
estimatorfT,0 when this estimator exists. It is shown that, in a special case, f̂T is strictly
better thanfT,0. The proofs are postponed until Section 6.

2 Notation and assumptions

Let (E,B, µ) be a measure space, withµ σ-finite, and such thatL2(µ) is infinite
dimensional. The norm ofL2(µ) will be denoted‖.‖. Let (ej , j ≥ 0) be an orthonormal
system inL2(µ).

We consider a stochastic processX = (Xt, t ∈ R) defined on a probability space
(Ω,A,P) and with values in (E,B). X is supposed to be measurable and such that the
Xt’s are identically distributed with densityf with respect toµ.

DenoteF the family of densitiesf such that

f =
∞∑

j=0

a jej ,

∞∑

j=0

a2
j < ∞. (2.1)

The class of the observable processes will be denotedX. Note that two different
processes may have the samef . In order to estimatef from the data (Xt, 0 ≤ t ≤ T)
(T > 0) we use a data-driven projection estimator :

f̂T =

k̂T∑

j=0

â j T
ej with â j T

=
1
T

∫ T

0
ej(Xt) dt, j ≥ 0

and
k̂T = max

{
j : 0 ≤ j ≤ kT ,

∣∣∣â j T

∣∣∣ ≥ γT

}

whereγT and the integerkT are chosen by the analyst. If{. . .} = ∅ one setŝkT = kT.
We always suppose that (unless otherwise stated)

kT → ∞,
kT

T
→ 0, γT → 0, asT → ∞.

If γT = 0 one obtains the projection density estimator

fT =

kT∑

j=0

â j T
ej (2.2)

NowF0(K) will denote the class off ∈ F such that

f =
K∑

j=0

a jej , aK , 0, andF0 =

∞⋃

K=0

F0(K),
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and finally we put
F1 = F − F0.

In order to study the rates of convergence off̂T overF0 andF1 we shall use strong
mixing coefficients of the form

α(C,D) = sup
C∈C,D∈D

|P(C ∩ D) − P(C)P(D)| (2.3)

whereC andD are sub-σ-algebra ofA.
For a given processY = (Yt, t ∈ I ), whereI ⊆ R, one defines its strong mixing

functions as

α
(2)
Y (u) = sup

h∈I ,h+u∈I
α(σ(Yh), σ(Yh+u)), u ≥ 0 and

αY(u) = sup
h∈R
α
(
σ(Yt, t ≤ h, t ∈ I ), σ(Yt, t ≥ h+ u, t ∈ I )

)
, u ≥ 0

with the conventionα(., .) = 0 if one of the two sub-σ-algebras is not defined. These
two classical coefficients will be used in the sequel.

Now the main assumptions and conditions areH1 andH2 :

H1



A1 : P(Xs+h,Xt+h) = P(Xs,Xt); s, t,h ∈ R (2-stationarity),

B1(r) : Mr = supj≥0

∥∥∥ej(X0)
∥∥∥

r
< ∞, where2 < r ≤ ∞,

C1(r) :
∫ ∞

0

[
α

(2)
X (u)

](r−2)/r
du < ∞,

c1 : γT ≃ T−γ (γ > 0) and kT ≃ Tβ (0 < β < 1).

H2



A2 : X is strictly stationary,

B2 = B1(∞) : M = supj≥0

∥∥∥ej(X0)
∥∥∥∞ < ∞,

C2 : αX(u) ≤ a e−bu (a > 0,b > 0)
(X is geometrically strongly mixing, (GSM)).

c2 : γT =

(
ln T ln ln T

T

)1/2
.

Note thatA2 andC2 are satisfied as soon asX is an enough regular stationary diffusion
process (cf Doukhan, 1994). Note also in some situations, one may chooseγT =

c
( ln T

T

)1/2 with constantc large enough.
ConcerningB2, it is satisfied in many classical cases, for example if (ej) is a

trigonometric system on a compact interval or the Hermite functions overR. In the
particular case whereE = N and µ is the counting measure, the natural system
(1{ j}, j ≥ 0) is, of course, uniformly bounded.

Finally some special assumptions concerning local time willappear in Section 5.



40 Local superefficiency of data-driven projection density estimators in continuous time

3 Rates of f̂T̂fT̂fT over F0F0F0

If f ∈ F0 we shall denoteK( f ) the only integerK such thatf ∈ F0(K). The following
proposition shows that̂kT is actually a consistent estimator ofK( f ).

Proposition 3.1 If f ∈ F0, then
1) if H1 holds,

P
(
k̂T , K( f )

)
= O(Tβ+2γ−1) (3.1)

thus, ifβ + 2γ < 1, k̂T → K( f ) in probability.

2) If H2 holds,
P
(
k̂T , K( f )

)
= o(T−δ), (3.2)

for eachδ > 0, in particular, if T = Tn ↑ ∞ with
∑

n T−δn < ∞, for someδ > 0, then

k̂Tn = K( f ) almost surely for n large enough. (3.3)

These results show that the adaptive estimatorf̂T has asymptotically the same
behaviour as the pseudo-estimator

gT =

K( f )∑

j=0

â j T
ej . (3.4)

The following lemma makes this fact explicit :

Lemma 3.1 If M = supj≥0

∥∥∥ej(X0)
∥∥∥∞ < ∞, one has

E
∥∥∥ f̂T − gT

∥∥∥2 ≤ M2kTP
(
k̂T , K( f )

)
. (3.5)

We now indicate the rates of̂fT on F0, we begin with the mean integrated square
error (MISE).

Proposition 3.2 If f ∈ F0, then
1) If H1 holds, we have

E
∥∥∥ f̂T − f

∥∥∥2 = O( 1
T1−β
)

(3.6)

2) If H2 holds,

T.E
∥∥∥ f̂T − f

∥∥∥2 −−−−→
T→∞

2
K( f )∑

j=0

∫ ∞

0
Cov (ej(X0),ej(Xu)) du. (3.7)

The next statement gives a uniform result.
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Corollary 3.1

lim sup
T→∞

sup
X∈X0(a0,b0,K0)

T.E
∥∥∥ f̂T − f

∥∥∥2 ≤ 8a0M2K0

b0
. (3.8)

HereX0(a0,b0,K0) denotes the family of processes that satisfyH2 with f ∈ F0(K),
K ≤ K0 andαX(u) ≤ ae−bu wherea ≤ a0 andb ≥ b0.

We now turn to the‖.‖∞-error :

Proposition 3.3 If f ∈ F0 and H2 holds, then

(∀ ε > 0), (∀ δ > 0), P
(∥∥∥ f̂T − f

∥∥∥∞ ≥ ε
)
= O(T−δ), (3.9)

and if T = Tn = nh (h > 0), n→ ∞,

∥∥∥ f̂T − f
∥∥∥∞ = O

(( ln ln T
T
)1/2)
, almost surely. (3.10)

Finally the limit in distribution appears in the following statement:

Proposition 3.4 If f ∈ F0, H2 holds and T= nh (h > 0) then
√

T
(
f̂T − f

)⇒ N (3.11)

where«⇒» means weak convergence in L2(µ) and N is a zero-mean Gaussian L2(µ)-
valued random variable with K( f ) + 1-dimensional support.

Proposition 3.2(2), 3.3 and 3.4 exhibit superoptimal rates if f ∈ F0. In general these
rates appear if the Castellana-Leadbetter condition holds (see Castellana and Leadbetter
(1986), Bosq (1998)). Here this condition isnotneeded; this means that local irregularity
of the sample paths is not necessary for obtaining these parametric rates overF0.

4 Asymptotic behaviour of f̂T̂fT̂fT over F1F1F1

In order to study consistency of̂fT when f ∈ F1 we need results concerning the
behaviour of the truncation index̂kT asT tends to infinity.

Below the first statement expresses the fact thatk̂T → ∞ in some sense when the
second one shows thatk̂T is not far from an«optimalkT».

Proposition 4.1 If f ∈ F1 then
1) If H1 holds

P
(
k̂T < A

)
= O(T−1), A > 0, (4.1)

2) If H2 holds
P
(
k̂T < A

)
= O(exp(−cA

√
T)
)
, (cA > 0), A > 0. (4.2)
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Now we specify the asymptotic behaviour ofk̂T. For this purpose we set

q(η) = min
{
q ∈ N,

∣∣∣a j

∣∣∣ ≤ η for all j > q
}
, η > 0. (4.3)

Note thatq(η) does exist sincea j → 0, and that, ifq(η) > 0, then
∣∣∣aq(η)

∣∣∣ > η. On the
other handη < η′ impliesq(η′) ≤ q(η).

We putqT(ε) = q
(
(1 + ε)γT

)
, ε > 0 ; q′T(ε′) = q

(
(1 − ε′)γT

)
, 0 < ε′ < 1 and we

consider the event
ET :=

{
qT(ε) ≤ k̂T ≤ q′T(ε′)

}
.

Then:

Proposition 4.2 If f ∈ F1 and qT(ε) ≤ kT, we have
1) Under H1,

P(Ec
T) = O(Tβ+2γ−1), (4.4)

2) Under H2,
P(Ec

T) = o
(
T−δ
)

for all δ > 0. (4.5)

We indicate two applications of these results:

Example 4.1 UnderH1, if
∣∣∣a j

∣∣∣ ≃ j−η (η > 1
2) one hasqT(ε) ≃ Tγ/η, then 2γ ≤ β ensures

qT(ε) ≤ kT for T large enough andβ < 1
2 yieldsP(Ec

T)→ 0.

Example 4.2 UnderH2, if
∣∣∣a j

∣∣∣ ≃ αρ j (α > 0, 0 < ρ < 1) andkT >
[
1+(2 ln 1/ρ)−1] ln T,

one hasqT(ε) ≃ ln T
2 ln(1/ρ) ,

P
(| k̂T

ln T
− (2 ln 1/ρ)−1| > ξ) = o(T−δ), ξ > 0, δ > 0. (4.6)

In particular, ifT = Tn with
∑

n T−δn < ∞ for someδ > 0, then

k̂Tn

ln Tn
→ (2 ln 1/ρ)−1 almost surely. (4.7)

Note that, from (4.7), one may deduce an estimator ofρ, namelyρ̂T = T
− 1

2k̂T+1 which
converges almost surely.

We now may state results concerning the MISE off̂T.

Proposition 4.3 If f ∈ F1 and qT(ε) ≤ kT then
1) Under H1,

E
∥∥∥ f̂T − f

∥∥∥2 = O(T−(1−β−2γ))
+

∑

j>qT (ε)

a2
j . (4.8)

2) Under H2,

E
∥∥∥ f̂T − f

∥∥∥2 = O(q
′
T(ε′)
T
)
+

∑

j>qT (ε)

a2
j . (4.9)
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Thus if H1 and conditions in Example 4.1 hold then, takingβ = 1
2η , yields

E ‖ fT − f ‖2 = O(T−
2η−1

2η
)
, (4.10)

when E
∥∥∥ f̂T − f

∥∥∥2 = O(T−
2η−1

2η +2γ)
.

Suppose now that conditions in Example 4.2 andH2 hold. Then, if lnT = O(kT), we
have

E
∥∥∥ f̂T − f

∥∥∥2 = O
( ln T ln ln T

T

)
, (4.11)

when, ifkT ≃ a ln T with a ≥ (2 ln 1/ρ)−1,

E ‖ fT − f ‖2 = O
( ln T

T

)
. (4.12)

In some special cases one may construct a process for which the rates (4.10) and (4.12)
are the true rates forfT. For example, if (ej) is the trigonometric basis overL2[0,1], one
may consider the process

Xt = Y[t] , t ∈ R
where (Yn, n ∈ Z) is a sequence of independent [0,1]-valued random variables with
common densityf . For this process the rates areT−(2η−1)/2η and ln T

T respectively. This
trick has been used previously in Blanke and Bosq (2000) and Bosq (1998) for the kernel
density estimator.

Finally, at least in this special case, the loss of rate forf̂T is a logarithm. ThuŝfT has
a 1/T-rate onF0 and a«good» rate onF1.

We now turn to uniform rate. We have the following proposition:

Proposition 4.4 Under H2, if
∣∣∣a j

∣∣∣ ≃ αρ j (α > 0, 0 < ρ < 1), j ≥ 0 and kT ≫ ln T, if

T = Tn where
∑ ln Tn

Tδn
< ∞ for someδ > 0 then for f ∈ F1 :

lim sup
Tn→∞

√
Tn

(ln Tn)3/2

∥∥∥ f̂Tn − f
∥∥∥∞ ≤ 2

√
2aδ
b

M2

ln(1/ρ)
(almost surely). (4.13)

Note that the rate in (4.13) is almost optimal since the law ofthe iterated logarithm
shows that the rate cannot be better than

( ln ln T
T

)1/2
.

5 Comparison with the local time estimator

We now suppose thatX admits anoccupation density(or local time) with respect toµ.
More precisely we make the following assumption:
H3 : ∀T ≥ 0, ∃ ℓT ∈ L2(µ ⊗ P) :

∫ T

0
ϕ(Xt) dt =

∫

E
ϕ(x)ℓT(x) dµ(x), ϕ ∈ M(E,R+), (5.1)
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whereM(E,R+) is the family ofB-BR measurable positive real functions defined on E
(BR is the Borelσ-algebra onR).

In such a situation one defines the local time density estimator as

fT,0 =
ℓT

T
, T > 0 (5.2)

fT,0 is then the density of the empirical measureµT defined by

µT(B) =
1
T

∫ T

0
1IB(Xt) dt, B ∈ B.

Example 5.1 If E = N andµ is the counting measure then H3 is satisfied and

fT,0(x) =
1
T

∫ T

0
1I{x}(Xt) dt, x ∈ N (5.3)

Example 5.2 If E = R, andµ is Lebesgue measure, H3 is equivalent to

lim inf
ε↓0

1
ε

∫

[0,T]2
P (|Xt − Xs| ≤ ε) dsdt < ∞, T > 0 (5.4)

(cf Geman and Horowitz, 1980).

Example 5.3 If (E,B, µ) ⊆ (E0, B0, µ0) with µ = g.µ0 and0 < m ≤ g ≤ m′ < ∞ then if
H3 holds forµ0 with local timeℓ(0)

T , it holds forµ with local timeℓT = ℓ
(0)
T /g.

Note that, ifE = R, the Castellana-Leadbetter condition, 1986 (cf also Bosq, 1998)
impliesH3 under mild regularity conditions, ifX is strictly stationary.

Results and references concerning the local time estimatorappear in Bosq and
Davydov (1999) and Bosq (1998). Note that, in particular,fT,0 is an unbiased estimator
of f : E fT,0 = f (a.e.).

Now we need a result concerning the MISE offT,0. For this purpose we denoteℓ(k)

the local time ofX on ]k− 1, k], k ∈ Z and make the following assumption :

H4 : X is strictly stationary and the series L=
∑
k≥1

∫

E

Cov
(
ℓ(1)(x), ℓ(k)(x)

)
dµ(x)

converges.

Note that the Davydov’s inequality shows that a sufficient condition forH4 is

H′4 : X is strictly stationary and there exists r> 2 such that∫

E

[
Eℓr(1)(x)

]2/r
dµ(x) < ∞ and

∑

k≥1

[αX(k)](r−2)/r < ∞.

Now the following statement exhibits superefficiency of fT,0 :

Proposition 5.1 If H3 and H4 hold, then

T.E
∥∥∥ fT,0 − f

∥∥∥2→ L, f ∈ F . (5.5)
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Concerningf̂T we have

Proposition 5.2 If H3 and H4 hold, then

E
∥∥∥ f̂T − f

∥∥∥2 = O( 1
T
)
+ E
(∑

j>k̂T

a2
j
)
. (5.6)

Note that the key of the proof of Proposition 5.2 is the fact that f̂T = Π
k̂T fT,0 where

Π
k̂T is the orthogonal projector of sp(ej , 0 ≤ j ≤ k̂T). A similar property forfT has been

noticed in Frenay (2001). Thus
∥∥∥∥ f̂T − Πk̂T f

∥∥∥∥ ≤
∥∥∥ fT,0 − f

∥∥∥ and (5.7)

E
∥∥∥∥ f̂T − Πk̂T f

∥∥∥∥
2
≤ E
∥∥∥ fT,0 − f

∥∥∥2 = O( 1
T
)
. (5.8)

Consequently the efficiency of f̂T depends on the«pseudo-bias» E
∑

j>k̂T
a2

j . Under
conditions in Proposition 4.3 this pseudo-bias may be replaced by

∑
j>qT (ε) a2

j and the

rates (4.11) and (4.12) do not change. However,f̂T is better thanfT,0 overF0 because
fT,0 =

∑∞
j=0 â j,Tej , when f̂T has the same asymptotic behaviour asgT =

∑K( f )
j=0 â j T

ej and
more precisely :

Proposition 5.3 If f ∈ F0 and H2, H3, H4 hold then

lim inf
T→∞

T.E
∥∥∥ fT,0 − f

∥∥∥2 ≥ 2
∞∑

j=0

∫ ∞

0
Cov
(
ej(X0),ej(Xu)

)
du (5.9)

when

T.E
∥∥∥ f̂T − f

∥∥∥2→ 2
K( f )∑

j=0

∫ ∞

0
Cov
(
ej(X0),ej(Xu)

)
du. (5.10)

It is easy to construct examples where
∫ ∞

0
Cov
(
ej(X0),ej(Xu)

)
du > 0 for some

j > K( f ) ; in that casef̂T is strictly better thanfT,0 onF0.

6 Proofs

6.1 Proof of Proposition 3.1

Set BT =

{
∃ j : 0 ≤ j ≤ kT ,

∣∣∣â j T

∣∣∣ ≥ γT

}
, then, we have forT large enough andK =

K( f ), Bc
T ⇒

∣∣∣âK T

∣∣∣ < γT ≤ |aK |
2 ⇒

∣∣∣aKT − âK T

∣∣∣ ≥ |aK |
2 thus P(Bc

T) ≤ 4VarâK T

|aK |2
. Now,
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2-stationarity yields

Var âK T =
2
T

∫ T

0

(
1− u

T
)
Cov
(
eK(X0),eK(Xu)

)
du, (6.1)

using Davydov’s inequality, see Bosq (1998, p. 21), one obtains

Var âK T ≤
2
T

∫ T

0

(
1− u

T
) 2r
r − 2

2
r−2

r
[
α

(2)
X (u)

] r−2
r ‖eK(X0)‖2r du

andH1 implies

Var âK T ≤
cr

T
, (6.2)

wherecr =
4rM2

r
r−2 2

r−2
r

∫ ∞
0

[
α

(2)
X (u)

] r−2
r du thus

P(Bc
T) ≤ 4cr

a2
K

1
T
. (6.3)

Now, as soon askT > K andγT ≤ |aK |
2 ,

{
k̂T > K, BT

}
⇒

kT⋃

j=K+1

{∣∣∣â j T

∣∣∣ ≥ γT

}
(6.4)

and

{
k̂T < K, BT

}
⇒
∣∣∣âK T − aK

∣∣∣ > |aK |
2
⇒
∣∣∣âK T − aK

∣∣∣ > γT (6.5)

thus

P
(
k̂T , K, BT

) ≤ 1

γ2
T

kT∑

j=K

Var âK T , (6.6)

again using Davydov’s inequality one obtains

P
(
k̂T , K, BT

)
= O(kT + 1

γ2
TT

)
= O(Tβ+2γ−1). (6.7)

Now, since (6.3) implies

P
(
k̂T , K, Bc

T

)
= O( 1

T
)
, (6.8)

(3.1) follows. ¤

The proof of (3.2) is similar. It uses the following exponential inequality:
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Lemma 6.1 Let Y = (Yt, 0 ≤ t ≤ T) be a real measurable stationary strong mixing
process such that

∫ ∞
0
αY(u) du < ∞ and MY = sup0≤t≤T ‖Yt‖∞ < ∞. Then for all r∈ [1, T

2 ]
and all positive constantsη, κ one has

P
(| 1

T

∫ T

0
Yt − EYt dt| ≥ η) ≤ 4 exp

(
− Tη2/M2

Y

c1 + c2
r
T + c3M−1

Y ηr

)
+

c4

η
MYαY(r) (6.9)

with c1 = 32(1+ κ)2
∫ ∞

0
αY(u) du, c2 = 4c1, c3 =

16
3 (1+ κ), c4 = 16(1+κ)

κ
.

Proof of Lemma 6.1. For q, r such that 2qr = T, we consider blocks of variables
VT( j), j = 1, . . . ,2[q] − 1, defined by

VT( j) =
∫ jr

( j−1)r
(Yt − EYt) dt andVT(2[q]) =

∫ 2qr

(2[q]−1)r
(Yt − EYt) dt.

So, for anyη > 0,

P
(| 1

T

∫ T

0
Yt − EYt dt| ≥ η) ≤ P

(|
[q]∑

j=1

VT(2 j)| > Tη
2
)
+ P
(|

[q]∑

j=1

VT(2 j − 1)| > Tη
2
)
.

The two terms may be handled similarly. Consider the first one, for example: we
use Rio’s (2000) coupling result recursively to approximate VT(2), . . . ,VT(2[q]) by
independent variables. For anyj ≥ 1, there exists a random variableV∗T (2 j), measurable
function of VT(2), . . . ,VT(2 j) such thatV∗T (2 j) is independent ofVT(2), . . . ,VT(2 j − 2)
and with same law asVT(2 j). Moreover :

E
∣∣∣V∗T (2 j) − VT(2 j)

∣∣∣ ≤ 2‖VT(2 j)‖∞
(
sup|P(AB) − P(A)P(B)|

)

where the supremum is taken over all setsA andB belonging toσ-algebras of events
generated by respectively{VT(2), . . . ,VT(2 j − 2)} andVT(2 j).

For any positiveκ, one may write

P
(|

[q]∑

j=1

VT(2 j)| > Tη
2
) ≤ P

(|
[q]∑

j=1

V∗T (2 j)| > Tη
2(1+ κ)

)

+ P
(|

[q]∑

j=1

VT(2 j) − V∗T (2 j)| > Tηκ
2(1+ κ)

)

Since theV∗T (2 j) are independent, Bernstein’s inequality (written as in Pollard (1984))
implies

P
(|

[q]∑

j=1

V∗T (2 j)| > Tη
2(1+ κ)

) ≤ 2 exp
(
− Tη2/M2

Y

c1 + c2
r
T + c3M−1

Y ηr

)
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with the help of Billingsley’s inequality (1979), and constantsci as stated as in Lemma
6.1. Moreover, Markov’s inequality yields

P
(|

[q]∑

j=1

VT(2 j) − V∗T (2 j)| > Tηκ
2(1+ κ)

) ≤ 2(1+ κ)
Tηκ

[q]∑

j=1

E |VT(2 j) − V∗T (2 j)|

and the result follows from Rio’s coupling result. ¤

Now the proof of (3.2) consists in applying (6.9) to the processes (ej(Xt)−a j , 0 ≤ t ≤
T) for j = K, . . . , kT. This allows to bound the quantitiesP(

∣∣∣â j T
− a j

∣∣∣ ≥ η) for suitableη.
In particular, one obtains

P(Bc
T) = O(exp(−A

√
T)
)
, (A > 0) (6.10)

Technical details are omitted.
Finally (3.3) comes from Borel-Cantelli lemma. ¤

6.2 Proof of Lemma 3.1

It suffices to write
∥∥∥ f̂T − gT

∥∥∥2 =
∥∥∥ f̂T − gT

∥∥∥2 1I{k̂T,K} ≤
( k̂T∑

j=1

â j
2
T

)
1I{k̂T,K}

≤ M2kT1I{k̂T,K}, hence (3.5) by taking expectations. ¤

6.3 Proof of Proposition 3.2

First we have,

E
∥∥∥ f̂T − f

∥∥∥2 = E
( k̂T∑

j=0

(â j T
− a j)

2)
+ E
(∑

j>k̂T

a2
j
)

(6.11)

then, by Davydov’s inequality: E
(∑k̂T

j=0(â j T
− a j)2) ≤ ∑kT

j=0 Var â j T
≤ cr

kT
T . On the other

hand, if f ∈ F0(K),
∑

j>k̂T
a2

j =
∑

j>k̂T
a2

j 1I{k̂T<K}, hence E (
∑

j>k̂T
a2

j ) ≤ ‖ f ‖
2 P(k̂T < K).

Now from (6.5) and (6.8) it follows thatP(k̂T < K) ≤ P(
∣∣∣âK T − aK

∣∣∣ > |aK |
2 ) +O( 1

T

)
. Using

Davydov’s inequality one obtains the bound

E (
∑

j>k̂T

a2
j ) = O

( 1
T
)
, (6.12)

and (6.11) gives (3.6). Concerning (3.7) first note that, iff ∈ F0(K), P(k̂T , K) = o(T−δ)
for eachδ > 0 (cf (3.2)), thus Lemma 3.1 entails E

∥∥∥ f̂T − gT

∥∥∥ = o(T−1). Thus it is only
necessary to study

E ‖gT − f ‖2 =
K∑

j=0

Var â j T
, (6.13)
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but using Billingsley’s inequality one obtains
∫ ∞

0

∣∣∣Cov (ej(X0),ej(Xu))
∣∣∣ du ≤ 4M2

∫ ∞

0
ae−bu ≤ 4aM2

b
< ∞. (6.14)

Now since

T.Var â j T
= 2
∫ T

0
(1− u

T
)Cov (ej(X0),ej(Xu)) du, (6.15)

the dominated convergence theorem gives

T.Var â j T
→ 2
∫ ∞

0
Cov (ej(X0),ej(Xu)) du (6.16)

and (6.13) yields (3.7). ¤

6.4 Proof of Corollary 3.1

It suffices to apply Billingsley’s inequality in (6.15) and to verify that the other bounds
are uniform overX0(a0,b0,K0) ; details are omitted. ¤

6.5 Proof of Proposition 3.3

First, puttingK( f ) = K one has
| f̂T − gT | = |( f̂T − gT)1I{k̂T,K}| ≤

∑kT

j=1 |â j T
| |ej |1I{k̂T,K} ≤ M2kT1I{k̂T,K}, one obtains, for

all ε > 0 and allδ > 0,

P
(∥∥∥ f̂T − gT

∥∥∥∞ ≥ ε) ≤ P(k̂T , K) = o(T−δ). (6.17)

Now, P(‖gT − f ‖∞ ≥ ε) ≤
∑K

j=0 P(
∣∣∣â j T
− a j

∣∣∣ ≥ ε
KM ), then, using (6.9) forYt = ej(Xt),

0 ≤ t ≤ T ; 0 ≤ j ≤ K, with r = B ln T one arrives at the bound

P(
∣∣∣â j T
− a j

∣∣∣ ≥ ε

KM
) ≤ 4 exp

(− T
ln T

3ε/KM2B
16(1+ κ)(1+ o(1))

)

+ 64
1+ κ
κ

KM2

ε
aexp(−bBln T)

For a givenδ > 0 and choosingB = δb−1 one obtains (3.9).
Concerning (3.10), note that (ej(Xt), t ∈ R) satisfies the law of the iterated logarithm

(LIL) : actually using the LIL for strongly mixing discrete timeprocesses (cf Rio,

2000) one obtains the LIL for the processes (Z(h)
i j =

1
h

∫ ih

(i−1)h
(ej(Xt) − a j) dt, i ≥ 0)

since these processes are bounded and geometrically strongly mixing. It follows that
‖gT − f ‖∞ = O

(( ln ln T
ln T

)1/2) almost surely, hence (3.10) by using (6.17) forT = nh. ¤
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6.6 Proof of Proposition 3.4

Since
√

T( f̂T − f ) =
√

T( f̂T − gT) +
√

T(gT − f ) and
√

T
∥∥∥gT − f̂T

∥∥∥∞ → 0 in probability
(see (6.17)), Theorem 4.4 in Billingsley (1979) shows that itsuffices to study asymptotic
normality of

√
T(gT − f ) =

K∑

j=0

(â j T
− a j)ej .

This is equivalent to asymptotic normality of the finite dimensional random vector√
T(â0T−a0, . . . , âK T−aK) which in turn is equivalent to this of the real random variables√
T
∑K

j=0 λ j(â j T
−a j) ; λ1, . . . , λK ∈ R. Finally using the processes (Z(h)

i j , i ≥ 0), 0≤ j ≤ K
and Rio (2000), the desired result follows. ¤

6.7 Proof of Proposition 4.1

1) Let j0 such thata j0 , 0, similarly as in the proof of Proposition 3.1 one obtains

{
k̂T < j0

}
⇒
∣∣∣â j0T
− a j0

∣∣∣ >
∣∣∣a j0

∣∣∣
2

(6.18)

as soon askT ≥ j0, henceP(k̂T < j0) = O(T−1). Sincef ∈ F1, j0 may be taken arbitrarily
large, hence (4.1).

2) (6.18) and the exponential inequality (6.9) lead to (4.2). Details are omitted. ¤

6.8 Proof of Proposition 4.2

For T large enough we have
∣∣∣aqT (ε)

∣∣∣ > (1+ ε)γT.

1) From Davydov’s inequality we getP(k̂T < qT(ε), BT) ≤ P(
∣∣∣̂aqT (ε),T − aqT (ε)

∣∣∣ > εγT) ≤
cr

ε2Tγ2
T
.

Now, if q′T(ε
′) ≥ kT one hasP(k̂T > q′T(ε′)) = 0, if not, since

∣∣∣a j

∣∣∣ ≤ (1 − ε′)γT for

j > q′T(ε′), we have
{
k̂T > q′T(ε

′), BT

}
⇒ ⋃kT≥ j>q′T (ε′)

∣∣∣â j T
− a j

∣∣∣ > ε′γT

thusP(k̂T > q′T(ε
′), BT) ≤ cr (kT+1)

ε′2Tγ2
T

and (4.4) follows.

2) For proving (4.5) we may and do suppose thatq′T(ε′) < kT. Then

P(Ec
T ∩ BT) ≤ P(|̂aqT (ε),T − aqT (ε)| ≥ εγT) +

∑

q′T (ε′)< j≤kT

P(|â j T
− a j | ≥ ε′γT),

Choosingr = c ln T in (6.9) one arrives at

P(Ec
T ∩ BT) = O(kTT−(c′ ln ln T))

+ O(kTγ
−1
T T−cb)
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for some constantc′ and the choicec > (3
2 + δ)b

−1 leads to (4.5) sinceP(Bc
T) = o(T−δ)

for all δ > 0. ¤

6.9 Proof of Proposition 4.3

We start from (6.11) and write

E
(∑

j>k̂T
a2

j 1IEc
T∩BT

)
≤ ‖ f ‖2 P(Ec

T), E
(∑

j>k̂T
a2

j 1IET∩BT

) ≤ ∑ j>qT (ε) a2
j , E
(∑k̂T

j=0(â j T
−

a j)21IET∩BT

) ≤ ∑ j≤q′T (ε′) Var â j T
. Finally, underH1 we write

E
(∑k̂T

j=0(â j T
− a j)21IEc

T∩BT

) ≤ ∑kT

j=0 Var â j T
, when underH2,

E
(∑k̂T

j=0(â j T
− a j)21IEc

T∩BT

) ≤ 4M2kTP(Ec
T), using the above bounds, (6.10) and (6.11)

one obtains (4.8) and (4.9). ¤

6.10 Proof of Proposition 4.4

Let ξ be a positive constant, for any positiveκi , i = 1,2 one obtains

P
(‖ f̂T − f ‖∞ ≥ ξ

) ≤ P
(‖ f̂T − f ‖∞1IET ≥

ξ

1+ κ1

)
+ P
(‖ f̂T − f ‖∞1IEc

T
≥ ξκ1

1+ κ1

)

≤ P1 + P2 + P3

with P1 =
∑q′T (ε′)

j=1 P
(
Mq′T(ε′)

∣∣∣â j T
− E â j T

∣∣∣ ≥ ξ

(1+κ1)(1+κ2)

)
, P3 = P(Ec

T) and P2 =

P
(
M
∑∞

j=qT (ε)+1

∣∣∣a j

∣∣∣ ≥ ξκ2
(1+κ1)(1+κ2)

)
.

ConcerningP1, the assumptions imply in particular thatq′T(ε′) is of the same order
as lnT/(2 ln(1/ρ)). Now (6.9) and the choicesYt = ej(Xt), MY = M, r = Rln T,

η =
2 ln(1/ρ)ξ

M(1+κ1)(1+κ2) ln T with ξ2 = c(ln T)3

T andT = Tn yield
∑

n P1 = O
( ln Tn

Tδn

)
as soon as

R= (1
2 + δ)b

−1 andc = 8M4(1+κ1)2(1+κ2)2(1+κ)2aδ
b ln2(1/ρ)

.

Now noting that
∑∞

j=qT (ε)+1

∣∣∣a j

∣∣∣ ≤ C(α, ρ)γT, it is easy to see that forTn large enough,
P2 = 0 with previous choices ofγT and ξ. Moreover, Proposition 4.2 implies also
P3 = o(T−δn ). Finally, collecting these results, one obtains Proposition 4.4 with the help
of Borel-Cantelli’s lemma since

∑
n

ln Tn

Tδn
< ∞. ¤
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6.11 Proof of Proposition 5.1

Using additivity of local time one may write
ℓT

T
=
ℓ{0}

T
+

1
T

[T]∑

j=1

ℓ( j) +
ℓ][T],T]

T
. Since

E
∥∥∥∥ ℓ{0}T

∥∥∥∥
2
= o
( 1

T

)
and E

∥∥∥∥ ℓ][T],T]

T

∥∥∥∥
2
≤ E‖ℓ(1)‖2

T = o
( 1

T

)
it suffices to study

nE‖1
n

n∑

j=1

ℓ( j) − f ‖2 =

E‖ℓ(1) − f ‖2 + 2
n−1∑

k=1

(
1− k

n
) ∫

E
Cov
(
ℓ(1)(x), ℓ(k+1)(x)

)
dµ(x) (6.19)

wheren = [T]. A classical trick allows to prove that the second member of(6.19) tends
to L, hence (5.5). ¤

6.12 Proof of Proposition 5.2

LetΠk̂T be the orthogonal projector of sp(ej , 0 ≤ j ≤ k̂T), we have
∥∥∥∥Πk̂T ( fT,0 − f )

∥∥∥∥ ≤
∥∥∥ fT,0 − f

∥∥∥ thus E
∥∥∥∥ f̂T − Πk̂T f

∥∥∥∥
2
≤ E

∥∥∥ fT,0 − f
∥∥∥2 and (5.5) implies

lim sup
T→∞

T.E
∥∥∥∥ f̂T − Πk̂T f

∥∥∥∥
2
≤ L hence (5.6) from (6.11) and the fact thatP(Ec

T ∪ Bc
T) =

o
( 1

T

)
. ¤

6.13 Proof of Proposition 5.2

This is clear from (6.11), (5.7) and (5.8). ¤

6.14 Proof of Proposition 5.3

(5.10) has been proved in Proposition 3.2. Concerning (5.9) first note that (5.1) implies
1
T

∫ T

0
ej(Xt) dt = 1

T

∫
E

ej(x)ℓT(x) dx thus â j T
=

∫
E

fT,0(x)ej(x) dµ(x), j ≥ 0, hencefT,0 =

∑∞
j=0 â j T

ej and
∑

â j
2
T
< ∞ (almost surely); then we haveTE

∥∥∥ fT,0 − f
∥∥∥2 = ∑∞j=0 TVar â j T

but H2 yields
∫ ∞

0

∣∣∣Cov (ej(X0),ej(Xu))
∣∣∣ du < ∞ and (6.16) holds. This implies (5.9) by

using Fatou lemma for the counting measure. ¤
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Resum

Construim un estimador de projecció conduı̈da per les dades per a processos en temps continu. Aquest
estimador assoleix taxes super-òptimes sobre una classe F0 de densitats que és densa en la famı́lia
de totes les densitats, i assoleix, a la vegada, taxes “raonables”. La classe F0 pot ésser escollida
prèviament per l’Estadı́stic.
Els resultats s’apliquen a processos a valors Rd i a valors N. En el cas particular on existeix un temps
local de quadrat integrable, es demostra que el nostre estimador és estrictament millor que l’estimador
temps local sobre F0.
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Paraules clau: estimació de densitats, conduı̈t per les dades, processos a temps continu
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