5 research outputs found

    Functional MRI of the vocalization-processing network in the macaque brain

    No full text
    Using functional magnetic resonance imaging in awake behaving monkeys we investigated how species-specific vocalizations are represented in auditory and auditory-related regions of the macaque brain. We found clusters of active voxels along the ascending auditory pathway that responded to various types of complex sounds: inferior colliculus (IC), medial geniculate nucleus (MGN), auditory core, belt, and parabelt cortex, and other parts of the superior temporal gyrus (STG) and sulcus (STS). Regions sensitive to monkey calls were most prevalent in the anterior STG, but some clusters were also found in frontal and parietal cortex on the basis of comparisons between responses to calls and environmental sounds. Surprisingly, we found that spectrotemporal control sounds derived from the monkey calls (scrambled calls) also activated the parietal and frontal regions. Taken together, our results demonstrate that species-specific vocalizations in rhesus monkeys activate preferentially the auditory ventral stream, and in particular areas of the antero-lateral belt and parabelt

    Functional MRI of the vocalization-processing network in the macaque brain

    Get PDF
    Using functional magnetic resonance imaging in awake behaving monkeys we investigated how species-specific vocalizations are represented in auditory and auditory-related regions of the macaque brain. We found clusters of active voxels along the ascending auditory pathway that responded to various types of complex sounds: inferior colliculus (IC), medial geniculate nucleus (MGN), auditory core, belt, and parabelt cortex, and other parts of the superior temporal gyrus (STG) and sulcus (STS). Regions sensitive to monkey calls were most prevalent in the anterior STG, but some clusters were also found in frontal and parietal cortex on the basis of comparisons between responses to calls and environmental sounds. Surprisingly, we found that spectrotemporal control sounds derived from the monkey calls (“scrambled calls”) also activated the parietal and frontal regions. Taken together, our results demonstrate that species-specific vocalizations in rhesus monkeys activate preferentially the auditory ventral stream, andin particular areas of the antero-lateral belt and parabelt.Peer reviewe

    Auditory representation of learned sound sequences in motor regions of the macaque brain

    No full text
    Human speech production requires the ability to couple motor actions with their auditory consequences. Nonhuman primates might not have speech because they lack this ability. To address this question, we trained macaques to perform an auditory-motor task producing sound sequences via hand presses on a newly designed device ("monkey piano"). Catch trials were interspersed to ascertain the monkeys were listening to the sounds they produced. Functional MRI was then used to map brain activity while the animals listened attentively to the sound sequences they had learned to produce and to two control sequences, which were either completely unfamiliar or familiar through passive exposure only. All sounds activated auditory midbrain and cortex, but listening to the sequences that were learned by self-production additionally activated the putamen and the hand and arm regions of motor cortex. These results indicate that, in principle, monkeys are capable of forming internal models linking sound perception and production in motor regions of the brain, so this ability is not special to speech in humans. However, the coupling of sounds and actions in nonhuman primates (and the availability of an internal model supporting it) seems not to extend to the upper vocal tract, that is, the supralaryngeal articulators, which are key for the production of speech sounds in humans. The origin of speech may have required the evolution of a "command apparatus" similar to the control of the hand, which was crucial for the evolution of tool use.Peer reviewe

    The Human Proteome Project: Current State and Future Direction

    No full text
    After the successful completion of the Human Genome Project, the Human Proteome Organization has recently officially launched a global Human Proteome Project (HPP), which is designed to map the entire human protein set. Given the lack of protein-level evidence for about 30% of the estimated 20,300 protein-coding genes, a systematic global effort will be necessary to achieve this goal with respect to protein abundance, distribution, subcellular localization, interaction with other biomolecules, and functions at specific time points. As a general experimental strategy, HPP research groups will use the three working pillars for HPP: mass spectrometry, antibody capture, and bioinformatics tools and knowledge bases. The HPP participants will take advantage of the output and cross-analyses from the ongoing Human Proteome Organization initiatives and a chromosome-centric protein mapping strategy, termed C-HPP, with which many national teams are currently engaged. In addition, numerous biologically driven and disease-oriented projects will be stimulated and facilitated by the HPP. Timely planning with proper governance of HPP will deliver a protein parts list, reagents, and tools for protein studies and analyses, and a stronger basis for personalized medicine. The Human Proteome Organization urges each national research funding agency and the scientific community at large to identify their preferred pathways to participate in aspects of this highly promising project in a HPP consortium of funders and investigators
    corecore