85 research outputs found
Taxa-area relationship of aquatic fungi on deciduous leaves
One of the fundamental patterns in macroecology is the increase in the number of observed taxa with size of sampled area. For microbes, the shape of this relationship remains less clear. The current study assessed the diversity of aquatic fungi, by the traditional approach based on conidial morphology (captures reproducing aquatic hyphomycetes) and next generation sequencing (NGS; captures other fungi as well), on graded sizes of alder leaves (0.6 to 13.6 cm2). Leaves were submerged in two streams in geographically distant locations: the Oliveira Stream in Portugal and the Boss Brook in Canada. Decay rates of alder leaves and fungal sporulation rates did not differ between streams. Fungal biomass was higher in Boss Brook than in Oliveira Stream, and in both streams almost 100% of the reads belonged to active fungal taxa. In general, larger leaf areas tended to harbour more fungi, but these findings were not consistent between techniques. Morphospecies-based diversity increased with leaf area in Boss Brook, but not in Oliveira Stream; metabarcoding data showed an opposite trend. The higher resolution of metabarcoding resulted in steeper taxa-accumulation curves than morphospecies-based assessments (fungal conidia morphology). Fungal communities assessed by metabarcoding were spatially structured by leaf area in both streams. Metabarcoding promises greater resolution to assess biodiversity patterns in aquatic fungi and may be more accurate for assessing taxa-area relationships and local to global diversity ratios.This work was supported by the strategic programme UID/BIA/04050/2013 (POCI-01-0145-FEDER-007569), funded by national funds through the Portuguese Foundation for Science and Technology (FCT) I.P. (http://www.fct.pt/) and by the ERDF through the COMPETE2020 - Programa Operacional Competitividade e Internacionalizacao (POCI) and by the project PTDC/AAC-AMB/117068/2010, funded by national funds through FCT I.P. and the European Regional Development Funds through the Operational Competitiveness Program (FEDER-COMPETE). Support from FCT to SD (SFRH/BPD/47574/2008 and SFRH/BPD/109842/2015) and from NSERC Discovery grant program (http://www.nserc-crsng.gc.ca/index_eng.asp) to FB is also acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio
The naked truth: a comprehensive clarification and classification of current 'myths' in naked mole-rat biology.
The naked mole-rat (Heterocephalus glaber) has fascinated zoologists for at least half a century. It has also generated considerable biomedical interest not only because of its extraordinary longevity, but also because of unusual protective features (e.g. its tolerance of variable oxygen availability), which may be pertinent to several human disease states, including ischemia/reperfusion injury and neurodegeneration. A recent article entitled 'Surprisingly long survival of premature conclusions about naked mole-rat biology' described 28 'myths' which, those authors claimed, are a 'perpetuation of beautiful, but falsified, hypotheses' and impede our understanding of this enigmatic mammal. Here, we re-examine each of these 'myths' based on evidence published in the scientific literature. Following Braude et al., we argue that these 'myths' fall into four main categories: (i) 'myths' that would be better described as oversimplifications, some of which persist solely in the popular press; (ii) 'myths' that are based on incomplete understanding, where more evidence is clearly needed; (iii) 'myths' where the accumulation of evidence over the years has led to a revision in interpretation, but where there is no significant disagreement among scientists currently working in the field; (iv) 'myths' where there is a genuine difference in opinion among active researchers, based on alternative interpretations of the available evidence. The term 'myth' is particularly inappropriate when applied to competing, evidence-based hypotheses, which form part of the normal evolution of scientific knowledge. Here, we provide a comprehensive critical review of naked mole-rat biology and attempt to clarify some of these misconceptions
Detailed Kinetics of the Direct Allo-Response in Human Liver Transplant Recipients: New Insights from an Optimized Assay
Conventional assays for quantification of allo-reactive T-cell precursor frequencies (PF) are relatively insensitive. We present a robust assay for quantification of PF of T-cells with direct donor-specificity, and establish the kinetics of circulating donor-specific T cells after liver transplantation (LTx). B cells from donor splenocytes were differentiated into professional antigen-presenting cells by CD40-engagement (CD40-B cells). CFSE-labelled PBMC from LTx-recipients obtained before and at several time points after LTx, were stimulated with donor-derived or 3rd party CD40-B cells. PF of donor-specific T cells were calculated from CFSE-dilution patterns, and intracellular IFN-Ξ³ was determined after re-stimulation with CD40-B cells. Compared to splenocytes, stimulations with CD40-B cells resulted in 3 to 5-fold higher responding T-cell PF. Memory and naΓ―ve T-cell subsets responded equally to allogeneic CD40-B cell stimulation. Donor-specific CD4+ and CD8+ T-cell PF ranged from 0.5 to 19% (median: 5.2%). One week after LTx, PF of circulating donor-specific CD4+ and CD8+ T cells increased significantly, while only a minor increase in numbers of T cells reacting to 3rd party allo-antigens was observed. One year after LTx numbers of CD4+ and CD8+ T cells reacting to donor antigens, as well as those reacting to 3rd party allo-antigens, were slightly lower compared to pre-transplant values. Moreover, CD4+ and CD8+ T cells responding to donor-derived, as well as those reacting to 3rd party CD40-B cells, produced less IFN-Ξ³. In conclusion, our alternative approach enables detection of allo-reactive human T cells at high frequencies, and after application we conclude that donor-specific T-cell PF increase immediately after LTx. However, no evidence for a specific loss of circulating T-cells recognizing donor allo-antigens via the direct pathway up to 1 year after LTx was obtained, underscoring the relative insensitiveness of previous assays
PI3K Signaling in Normal B Cells and Chronic Lymphocytic Leukemia (CLL).
B cells provide immunity to extracellular pathogens by secreting a diverse repertoire of antibodies with high affinity and specificity for exposed antigens. The B cell receptor (BCR) is a transmembrane antibody, which facilitates the clonal selection of B cells producing secreted antibodies of the same specificity. The diverse antibody repertoire is generated by V(D)J recombination of heavy and light chain genes, whereas affinity maturation is mediated by activation-induced cytidine deaminase (AID)-mediated mutagenesis. These processes, which are essential for the generation of adaptive humoral immunity, also render B cells susceptible to chromosomal rearrangements and point mutations that in some cases lead to cancer. In this chapter, we will review the central role of PI3K s in mediating signals from the B cell receptor that not only facilitate the development of functional B cell repertoire, but also support the growth and survival of neoplastic B cells, focusing on chronic lymphocytic leukemia (CLL) B cells. Perhaps because of the central role played by PI3K in BCR signaling, B cell leukemia and lymphomas are the first diseases for which a PI3K inhibitor has been approved for clinical use
Influenza vaccination for immunocompromised patients: systematic review and meta-analysis from a public health policy perspective.
Immunocompromised patients are vulnerable to severe or complicated influenza infection. Vaccination is widely recommended for this group. This systematic review and meta-analysis assesses influenza vaccination for immunocompromised patients in terms of preventing influenza-like illness and laboratory confirmed influenza, serological response and adverse events
Human Cytomegalovirus IE1 Protein Elicits a Type II Interferon-Like Host Cell Response That Depends on Activated STAT1 but Not Interferon-Ξ³
Human cytomegalovirus (hCMV) is a highly prevalent pathogen that, upon primary
infection, establishes life-long persistence in all infected individuals. Acute
hCMV infections cause a variety of diseases in humans with developmental or
acquired immune deficits. In addition, persistent hCMV infection may contribute
to various chronic disease conditions even in immunologically normal people. The
pathogenesis of hCMV disease has been frequently linked to inflammatory host
immune responses triggered by virus-infected cells. Moreover, hCMV infection
activates numerous host genes many of which encode pro-inflammatory proteins.
However, little is known about the relative contributions of individual viral
gene products to these changes in cellular transcription. We systematically
analyzed the effects of the hCMV 72-kDa immediate-early 1 (IE1) protein, a major
transcriptional activator and antagonist of type I interferon (IFN) signaling,
on the human transcriptome. Following expression under conditions closely
mimicking the situation during productive infection, IE1 elicits a global type
II IFN-like host cell response. This response is dominated by the selective
up-regulation of immune stimulatory genes normally controlled by IFN-Ξ³ and
includes the synthesis and secretion of pro-inflammatory chemokines.
IE1-mediated induction of IFN-stimulated genes strictly depends on
tyrosine-phosphorylated signal transducer and activator of transcription 1
(STAT1) and correlates with the nuclear accumulation and sequence-specific
binding of STAT1 to IFN-Ξ³-responsive promoters. However, neither synthesis
nor secretion of IFN-Ξ³ or other IFNs seems to be required for the
IE1-dependent effects on cellular gene expression. Our results demonstrate that
a single hCMV protein can trigger a pro-inflammatory host transcriptional
response via an unexpected STAT1-dependent but IFN-independent mechanism and
identify IE1 as a candidate determinant of hCMV pathogenicity
- β¦